Inferences for logistic regression

A quick recap: Logistic regression is about predicting the response of a binary categorical variable y by fitting a linear model to the log of its odds ratio

$$\ln\left(\frac{\hat{y}}{1-\hat{y}}\right) = b_0 + b_1 x_1 + b_2 x_2 \quad \text{etc.}$$

Inference types we will learn:

- Significance test for the null hypothesis that all slopes are 0.
- Significance test for the null hypothesis that a specific/ individual slope is 0.
- Confidence intervals for individual slope estimates.
- Confidence intervals for the odds ratio, and its interpretation for each explanatory variable.

The general strategy and interpretations are very similar to other inference strategies we've already seen. However, we use z-scores and z procedures instead of t procedures. Interpretation of confidence intervals requires a bit more care in order to get it right.

Confidence interval calculation:

Look up the z^* value for the required confidence level. Then proceed with the needed calculation.

Confidence interval for true slope β_1 :

$$b_1 \pm z^* S E_{b_1}$$

Confidence interval for the odds ratio of β_1 :

$$(e^{b_1-z^*SE_{b_1}}, e^{b_1+z^*SE_{b_1}})$$

Hypothesis test for H_0 : $\beta_1 = 0$:

Compute the test statistic

$$z = \frac{b_1 - 0}{SE_{b_1}}$$

and look up *P*-value.

Some examples and exercises follow.

In [25]: # We revisit data from a previous class: The HSB data on the # High School and Beyond survey conducted by the National Center # for Educational Statistics. # Regression to predict "gender" from other variables. # lrdat = read.csv(file="https://www.openintro.org/data/csv/hsb2.cs v", header=TRUE, sep=",") head(lrdat) gmod = glm (gender ~ read+write, data=lrdat, family=binomial) summary(gmod) #boxplot(lrdat\$read ~ lrdat\$gender

A data.frame: 6 × 11

	id	gender	race	ses	schtyp	prog	read	write	math	science	socst	
	<int></int>	<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	
1	70	male	white	low	public	general	57	52	41	47	57	
2	121	female	white	middle	public	vocational	68	59	53	63	61	
3	86	male	white	high	public	general	44	33	54	58	31	
4	141	male	white	high	public	vocational	63	44	47	53	56	
5	172	male	white	middle	public	academic	47	52	57	53	61	
6	113	male	white	middle	public	academic	44	52	51	63	61	
Ca glı t)	ll: m(for	mula =	gend	er ~ r	ead +	write, f	amily	/ = b:	inomia	al, dat	a = l	rda
Dev -1	vianco Min .7971	e Resi -1.0	duals 1Q 104	: Media —0.661	n 21.	3Q 0731 1	Max 8672	(2				
Co	effic	ients:		+ - C+ -	F							
(I rea wr:	nterco ad ite -	ept) -	stima 1.706 0.071 0.106	te Std 14 01 37	. Erro 0.9234 0.0196 0.0221	or z valu 2 1.84 50 3.62 .4 -4.80	ie Pr(18 0.0 23 0.0 04 1.5	> z) 064656 000292 56e-06) 5 . 1 *** 5 ***			
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1												
(D	isper	sion p	arame	ter fo	r binc	omial fam	nily t	aken	to b	e 1)		
Re: AI	Nul sidua C: 25	l devi l devi 3.82	ance: ance:	275.6 247.8	4 on 2 on	199 deg 197 deg	jrees jrees	of fi of fi	reedor reedor	n n		
Nu	nber	of Fis	her S	coring	itera	tions: 4	ŀ					

Exercises:

- 1. Carry out a significance test for the null hypothesis that all slopes are 0.
- 2. Significance test for each slope is 0.
- 3. Confidence intervals for each slope estimate.
- 4. Confidence intervals for the odds ratio, and its interpretation for each slope.

```
In [35]: # There are two slightly different, generally accepted, methods
# for computing logistic regression confidence intervals.
# The confint.default() function computes the standard CI.
# The confint() function computes a special CI called
# profile-likelihood based method (that's the reason for the
# "waiting for profiling to be done..." comment seen in output).
# They both give very similar answers.
#
cbind(OR = coef(gmod), confint.default(gmod))
cbind(OR = coef(gmod), confint(gmod))
```

A matrix: 3 × 3 of type dbl

	OR	2.5 %	97.5 %
(Intercept)	1.70614330	-0.10372917	3.51601576
read	0.07101402	0.03259565	0.10943238
write	-0.10636747	-0.14976718	-0.06296775
Waiting	for profil	ing to be	done

A matrix: 3 × 3 of type dbl

		OR	2.5 %	97.5 %
	(Intercept)	1.70614330	-0.08283484	3.55145752
	read	0.07101402	0.03366076	0.11080380
	write	-0.10636747	-0.15168955	-0.06455949
Tr [20].				
10 [28]:				
In []:				