
In [3]: # Read data file "cars.csv" from openintro.org site
#
ex1dat = read.csv(file="https://www.openintro.org/data/csv/cars93.c
sv", header=TRUE, sep=",")
head(ex1dat)
#lmresults = lm(write ~ socst+math+read+science, data=ex1dat)
#summary (lmresults)

A data.frame: 6 × 6

type price mpg_city drive_train passengers weight

<fct> <dbl> <int> <fct> <int> <int>

1 small 15.9 25 front 5 2705

2 midsize 33.9 18 front 5 3560

3 midsize 37.7 19 front 6 3405

4 midsize 30.0 22 rear 4 3640

5 midsize 15.7 22 front 6 2880

6 large 20.8 19 front 6 3470



In [7]: # Explore relationship between price and other variables.
# Let's consider weight first
#
plot(ex1dat$weight, ex1dat$price)
cat("The correlation =", cor(ex1dat$weight, ex1dat$price))

The correlation = 0.758112



In [10]: # Fit linear regression to model price vs weight
#
lmresults = lm (price ~ weight, data=ex1dat)
summary (lmresults)

Exercise for students:
Write the equation of the regression line.
Interpret the slope.
Interpret .𝑅2

Exercise 2 for students:
Do a similar study for the relationship between price and mpg_city.
Write the equation of the regression line.
Interpret the slope.
Interpret .𝑅2

Call:
lm(formula = price ~ weight, data = ex1dat)

Residuals:
    Min      1Q  Median      3Q     Max 
-12.767  -3.766  -1.155   2.568  35.440 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -20.295205   4.915159  -4.129 0.000132 ***
weight        0.013264   0.001582   8.383 3.17e-11 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.575 on 52 degrees of freedom
Multiple R-squared:  0.5747, Adjusted R-squared:  0.5666 
F-statistic: 70.28 on 1 and 52 DF,  p-value: 3.173e-11



In [17]: # Now let us explore the relationship between price and 
# both  weight and mpg_city taken together.
#
lmresults = lm(price ~ weight+mpg_city, data=ex1dat)
summary (lmresults)

Exercise 3
Write the equation of the regression line.
Interpret each slope.
Interpret .𝑅2

Call:
lm(formula = price ~ weight + mpg_city, data = ex1dat)

Residuals:
    Min      1Q  Median      3Q     Max 
-13.059  -3.209  -1.284   2.108  35.442 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -30.836215  17.207332  -1.792   0.0791 .  
weight        0.015121   0.003311   4.567 3.16e-05 ***
mpg_city      0.210219   0.328699   0.640   0.5253    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.619 on 51 degrees of freedom
Multiple R-squared:  0.5781, Adjusted R-squared:  0.5616 
F-statistic: 34.94 on 2 and 51 DF,  p-value: 2.769e-10



In [20]: # Various diagnostic plots based on residuals:
plot (lmresults)







Another dataset
Now let's try a dataset in which the response variable has stronger correlation with predictor variables. It
contains 200 observations from the High School and Beyond survey conducted by the National Center for
Educational Statistics.

In [21]: ex2dat = read.csv(file="https://www.openintro.org/data/csv/hsb2.cs
v", header=TRUE, sep=",")
head(ex2dat)

Exercise
Make pairwise scatterplots of all the test scores against each other.
Find pairwise correlation of all the test scores with each other.
Create a linear model to predict "read" scores from various other predictors. Which predictor works
best?
Create a MLR model to predict "read" scores.
Make plots showing residuals diagnostics.
Determine whether the conditions for MLR are met.

In [ ]:

A data.frame: 6 × 11

id gender race ses schtyp prog read write math science socst

<int> <fct> <fct> <fct> <fct> <fct> <int> <int> <int> <int> <int>

1 70 male white low public general 57 52 41 47 57

2 121 female white middle public vocational 68 59 53 63 61

3 86 male white high public general 44 33 54 58 31

4 141 male white high public vocational 63 44 47 53 56

5 172 male white middle public academic 47 52 57 53 61

6 113 male white middle public academic 44 52 51 63 61


