
Chapter 1

More general regression methods

The regression methods covered thus far only apply to situations in which we want a linear
model for the relationship between two numerical variables. While this is an extremely use-
ful capability, there are many important applications in the real world that do not conform
to these limitations. A quick look at the examples in the earlier chapters makes this clear:
The box-office revenue from a movie depends not only on its production budget, but also on
various other factors such as its cast, genre, run time, advertising budget, and more. Airline
fares depend not only on the distance traveled, but also on available inventory, advance
purchase, travel season, advertising, and other variables.

It is clear that in many applications of practical interest, we want to model the effect of
several variables acting in tandem, upon a response variable. In addition, we often find that
one or more of these variables is categorical, instead of numerical. This suggests there are
at least two directions in which we would like to generalize regression methods:

1. Model the relationship between a response variable and several predictor variables.

2. Accommodate categorical predictor variables.

We will consider categorical response variables later, since that is an important special topic
in its own right.

This chapter introduces a number of key topics related to these generalizations. We begin
by discussing the technical aspects of extending regression to multiple predictor variables,
including software implementation in R. This is followed by examining the key theoretical
assumptions and conditions that underlie a valid model. [complete this paragraph after
writing the bulk of this chapter]

1.1 Multilinear regression

Linear regression with several predictor variables is known as multilinear regression (MLR).
As with simple linear regression, we emphasize two major tasks in the modeling process

a. Construct/compute a suitable MLR model.
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2 CHAPTER 1. MORE GENERAL REGRESSION METHODS

b. Assess the quality and validity of the model.

We will begin by focusing on how to setup MLR models, and compute the needed parame-
ters. The task of assessing the models’ quality and validity will be addressed in detail later.

Conceptually, the generalization from simple linear to multilinear is quite straightforward.
To elucidate the parallel nature of the concepts, let us consider an example analogous to one
we saw earlier.

Example:

A very small dataset consisting of only 4 observations is shown
in the table. It contains 2 predictor variables (x, y) and 1
response variable (z). The goal is to find the plane of best fit
using the least squares method – i.e., by minimizing the sum
of the square of the errors.

Solution:
Here are the key steps we will follow

xi yi zi
0 0 12
1 0 20
0 1 42
3 3 30

a. Assume the plane has the equation: ẑ = b + mx + ny, where b,m, n are to be
determined

b. For each observation i , find the residual: ei = zi − ẑi

c. Compute the least squares cost function: f =
∑

(ei)
2

d. Minimize f : Set ∂f
∂b

= ∂f
∂m

= ∂f
∂n

= 0, and solve for b,m, n.

Computations based on the above steps:

a. Model: ẑ = b+mx+ ny

b. Residuals: e1 = (12−b), e2 = (20−b−m), e3 = (42−b−n), e4 = (30−b−3m−3n)

c. Cost function: f = (12− b)2 + (20− b−m)2 + (42− b− n)2 + (30− b− 3m− 3n)2

d. Minimize:
∂f
∂b

= −2(12− b)− 2(20− b−m)− 2(42− b− n)− 2(30− b− 3m− 3n) = 0 ⇒
104− 4b− 4m− 4n = 0
∂f
∂m

= −2(20− b−m)− 6(30− b− 3m− 3n) = 0 ⇒ 110− 4b− 10m− 9n = 0
∂f
∂n

= −2(42− b− n)− 6(30− b− 3m− 3n) = 0 ⇒ 132− 4b− 9m− 10n = 0

Solve for b,m, n and get: n = 138/11,m = −104/11, b = 252/11

Answer: The plane of best fit is ẑ = 252
11
− 104

11
x+ 138

11
y

In principle, the strategy used in this example can be extended to any (finite) number of
predictor variables. In practice, MLR computations are almost always carried out using
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software or technology tools. However, before we do that, let us formulate the problem in
clear mathematical terms.

Assume we have a dataset containing k predictor variables, x1, x2, . . . , xk, and a response
variable, y. To begin with, we assume all variables are numerical. The form of the MLR
model is taken to be

ŷ = b0 + b1x1 + b2x2 + . . .+ bkxk, k ∈ N (1.1)

where ŷ is the predicted response, and b0, b1, . . . , bk are the unknown regression coefficients
that we seek to determine. This is done using a least squares formulation that minimizes
the sum of the square of the residuals. It is possible to write closed-form expressions for
computing the regression coefficients in terms of the numerical values of the variables in our
dataset. But the resulting computations are extremely cumbersome, and it is common prac-
tice to simply rely on technology to obtain the coefficient values. For the interested reader,
we provide a summary of the usual matrix-based formalism for computing the regression
coefficients in the boxed supplement below.

How to compute the MLR coefficients (optional reading!)

Assume our dataset contains n records (or observations), with k predictor variables and
a response variable. The MLR model in equation (1.1) can be re-written as

y = b0 + b1x1 + b2x2 + . . .+ bkxk + e

where y is the actual/true response and e is the residual. For convenience, we introduce
the following matrix-vector notation to denote the variables in our dataset:

• Response variable = y =


y1
y2
...
yn


• Matrix X = [1,x1,x2, . . . ,xk], where each entry is an n×1 column vector. The first

entry is an n × 1 vector of 1’s. The remaining entries are the predictor variables,
each of which is an n× 1 vector. Thus,

x1 =


x11
x12
...
x1n

 , x2 =


x21
x22
...
x2n

 , · · · xk =


xk1
xk2
...
xkn


The dimensions of X are n× (k + 1), and its first row is: [1, x11, x21, . . . , xk1]

• Let b = [b0, b1, b2, . . . , bk]
T denote the k + 1 vector of regression coefficients.
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In this notation the MLR model, when applied to the given dataset, looks like

y = Xb + e (OR ŷ = Xb)

where e is the n× 1 vector of residuals.

The least squares cost function (sum of the square of the residuals) is

f(b) = eTe = (y −Xb)T (y −Xb)

To minimize f , we set ∇f = 2[XTX b−XTy] = 0 and solve for b. The result is

b = (XTX)−1 XTy

The optimal regression coefficients can be computed using this final result.

An important question that arises, especially when dealing with large datasets such as those
seen in many data science and data analytics applications, is: How do we decide what vari-
ables to use as predictors? Should we use all the available variables? Or, is there some
optimal subset that would yield the best model? We address questions such as these later,
as part of our discussion on model optimization. Note that we will generally assume the
choice of response variable is fixed.

The general form of the model given in equation (1.1) holds for any choice of predictor
variables. In the R software framework, MLR is implemented using the same function that
performs simple linear regression. To illustrate its usage, let us revisit the movies dataset
that we considered in an earlier chapter.

Example:

The file movies.csv contains data on a sample of 120 movies produced in the United States,
together with information on certain variables associated with each movie. The first few
lines of the datafile are shown below

In this example we will construct a multilinear regression model to predict a movie’s USGross
based on its Budget, Stars and Run Time. We note that the variables USGross and Budget



1.1. MULTILINEAR REGRESSION 5

are in millions of dollars, Run Time is in minutes, and Stars has no units.
Solution:
Assume a model of the form

̂USGross = b0 + b1(Budget) + b2(Stars) + b3(Run Time) (1.2)

where ̂USGross is the predicted USGross, and b0, . . . , b3 are constant regression coefficients.
The following R code reads the data file, performs MLR, and prints out the summary results.

# Read datafile and store data in a dataframe:

movdat = read.csv(file="https://cs.earlham.edu/~pardhan/sage_

and_r/movies.csv", header=TRUE , sep=",")

# Construct MLR model using the lm() function:

lmresults = lm(USGross ~ Budget+Stars+Run_Time , data=movdat)

# summarize results:

summary(lmresults)

Here is the corresponding output:

Note that in practice it may be helpful for your code to include a line that also displays
the header of the data file, as the names of the variables must exactly match those in the
data file. The output summarizes several key results of interest when constructing an MLR
model. Our present goal is to just find the regression coefficients, which are shown in the
table named Coefficients: under the column named Estimate. The left-most column
shows the name of the variable whose coefficient is in the Estimate column. Accordingly,
the MLR model is

̂USGross = −22.9898 + 1.1344(Budget) + 24.9724(Stars)− 0.4033(Run Time) (1.3)

A common practice after constructing an MLR model is to provide an interpretation of key
slope coefficients. In this example, we could say:
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• For each 1 million dollar increase in a movie’s Budget, the model predicts an average
increase of 1.1344 million dollars in its USGross, when all other variables are held
constant.

• For each 1 unit increase in a movie’s Stars rating, the model predicts an average
increase of 24.9724 million dollars in its USGross, when all other variables are held
constant.

• For each 1 minute increase in a movie’s Run Time, the model predicts an average
decrease of 0.4033 million dollars in its USGross, when all other variables are held
constant.

We emphasize, the focus of this example has simply been on illustrating how to use R to
compute an MLR model. The example has intentionally ignored the important question
of whether the resulting model is valid or reliable for any practical purpose. In order to
address those questions, we need to discuss some additional theoretical background on the
assumptions and conditions that underlie MLR models.

Assumptions and conditions

Like simple linear regression, the necessary conditions for a valid MLR model broadly consist
of four components:

a. Linearity: Each predictor variable must be approximately linearly related to the re-
sponse variable, and have no significant outliers.

b. Normal residuals: The residuals resulting from the model must be approximately nor-
mally distributed, with mean=0.

c. Constant variance: The residuals must exhibit approximately constant variance as a
function of predicted values.

d. Independent observations: The data in the sample must consist of independent obser-
vations.

It is common practice to use graphical checks for most of these conditions, although this
still leaves open some questions about exactly which graph to use for which condition. For
example, to check linearity the recommended method is to graph the residuals versus each
predictor variable (e vs x), instead of the response versus each predictor (y vs x). The ratio-
nale is that the residuals include the effect of all the variables in our model, and not just the
bivariate relationship between y and x. Predictors that satisfy the linearity condition will
show a random scatter of points above and below 0 in the e vs x plot, with no discernable
curve or pattern.

The normal residuals condition is typically checked by plotting a histogram of the residuals,
and/or with a normal probability plot. If the histogram looks nearly symmetric, unimodal
and centered around 0, we assume the condition is met. In a normal probability plot, we
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want the residuals to approximately follow the diagonal reference line that indicates a perfect
normal distribution.

The constant variance condition is checked using a scatter plot of the residuals versus pre-
dicted values. Again, the preference here is to plot against predicted values because they
include the effect of the entire model. If the condition is satisfied, the residuals should exhibit
a scatter of points above and below 0 in a roughly constant band throughout the plot.

Lastly, for the independent observations condition, it is usually necessary to obtain infor-
mation about how the data were sampled. Ideally, we want a random sample that is rep-
resentative of the underlying population of interest. A graphical check that is also often
recommended is to plot the residuals versus the order in which the data are recorded. This
graph will show any time-dependent pattern, if it is present in the data.

As an example, let us check whether the movies data set we saw earlier satisfies each of these
conditions. Figure 1.1 shows a plot of the residuals versus each of the predictor variables.

Figure 1.1: Scatterplots of residuals vs predictors for the movies example.

The Budget variable certainly seems to violate linearity, as there appears to be a downward
sloping trend in the lower half of the domain. More importantly, all 3 graphs exhibit the
presence of at least one significant outlier, with a residual value close to 200. Thus, it seems
reasonable to say this dataset fails to satisfy the first condition. It is possible the data may
satisfy the linearity condition if we remove the outlier and repeat the analysis.

In Figure 1.2 we see a normal probability plot and histogram of the residuals. Although
the trend is not perfectly normal, it is within range of acceptable. This is particularly true
because the sample size is 120, which is not small. The normal residuals condition is not
as critical for larger sample sizes. Hence, it is reasonable to conclude the normal residuals
condition is satisfied.

To check the constant variance condition, Figure 1.3 shows a plot of the residuals versus
predicted values. As seen in the graph, the variance increases significantly when we move
from lower to higher predicted values. Thus, these data clearly violate the constant variance
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condition.

Figure 1.2: Residuals normal probability plot and histogram for the movies example.

Finally, to check the independent observations
condition, we require more information about
how the data were compiled – e.g., whether the
sample is random, or at least representative of
movies produced in the United States. Since we
do not have access to this information, we cannot
assume independence.

To summarize, the movies dataset fails to satisfy
the linearity, the constant variance, and the inde-
pendent observations conditions. Thus, it would
not be appropriate to use multilinear regression in
this situation. Figure 1.3: Residuals vs predicted

for the movies example.

We will further demonstrate the use of all these strategies for checking the conditions in a
variety of examples later.

The adjusted R2 indicator

Adjusted R2 is a measure of how closely the MLR model fits the sampled data. It estimates
what proportion of the variance in the response (i.e., observed y values) is explained by the
variance in the predictor variables. Recall, for a single predictor we had defined

R2 = 1 − variance in residuals

variance in observed y
(1.4)

When we include more predictors, the aspiration is that each predictor will help make the
model better than it is without that predictor. Since the R2 value in (1.4) may improve
slightly even with predictors that are only weakly correlated with the response, we would
like to define a new indicator that only improves when the benefit from the predictor is
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sufficiently strong. This is the idea behind adjusted R2, which is defined as

R2
adj = 1 −

(
variance in residuals

variance in observed y

)
×
(

n− 1

n− k − 1

)
(1.5)

where n is the number of observations or records in the dataset, and k is the number of
predictor variables. Notice that the multiplication factor

(
n−1

n−k−1

)
is always greater than

1, which means R2
adj is always smaller than R2. Furthermore, as the number of predictors

increase, R2
adj will tend to decrease, unless the new predictors help to cut down the residuals

significantly. This is exactly the behavior we want, since it is not biased in favor of increasing
the number of predictors, as equation (1.4) is.

As an illustration, in the movies example seen earlier, the summary output from R shows
that R2 = 0.4739 and R2

adj = 0.4603. To assess the quality of fit of the associated MLR
model, we could say that about 46% of the variance in a movie’s USGross is explained by
this model. Later we will look at a strategy for selecting an optimal set of predictors in MLR
models in such a way that the R2

adj is maximized.

1.2 Categorical predictor variables

In many real world applications it is common to want an MLR model to include one or more
categorical predictors. To illustrate with a familiar example, the movies dataset seen earlier
contains a Genre variable that indicates the type of movie (comedy, horror, action, etc.). It
is possible that Genre is a significant predictor of USGross, in conjunction with some of the
other predictors. Similarly, an MLR model to predict airline fares might want to include vari-
ables such as season (summer, winter, etc.), and route competition (high, low), among others.

The simplest categorical predictors are binary variables, those with only two complementary
opposite categories. It turns out that once we learn how to include binary variables in our
model, we can reduce all categorical predictors to a collection of binary variables. Let us
consider an example that shows how to include binary variables in linear regression models.

Example:
A dataset contains nutrition informa-
tion on food items served at popu-
lar fast food restaurants. To illustrate
how to work with categorical predictors,
we consider a subset of these data, as
shown in the table. For each food item,
its type and total fat content (in grams)
are listed. Our goal is to develop a lin-
ear regression model to predict total fat

Item Name Type Fat (g)
1 Big Mac Burger 27
2 French fries FF 14
3 Chocolate shake MS 9
4 Quarter pounder Burger 26
5 Whopper Burger 38
6 Grilled chikken SW CS 16
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from the type of the food item. For the purpose of this example we will reduce “Type” to
a binary categorical variable by taking its value to be either “Burger” or “not Burger.”
However, this is not a restriction inherent to the method. In later examples we will
show how to accommodate multiple categories without reducing or grouping any of them.

Solution
Here is our strategy:

i. Since Type is binary, we turn it into a numerical variable using 0’s and 1’s.

ii. We perform standard linear regression with the numerical variables Type and Fat.

Continuing on to the details, since we want to predict Fat from Type:
Predictor or x-variable = Type (no units)
Response or y-variable = Fat (grams)

We convert Type to numeric by defining: Burger=1, and not Burger=0.

Next, we compute the correlation and summary statistics using software and obtain:
x̄ = 0.5, sx = 0.5477, ȳ = 21.6667, sy = 10.6333, r = 0.893

The slope of the regression line is: b1 = r sy
sx

= 0.893
(
10.6333
0.5477

)
= 17.337 grams

The intercept is: b0 = ȳ − b1x̄ = 21.6667− (17.337)(0.5) = 12.998 grams

Therefore, the line of best fit is: ŷ = 12.998 + 17.337x

The corresponding linear regression model is usually written as

F̂at (g) = 12.998 + 17.337 (Type:Burger) (1.6)

The x-variable Type:Burger takes on the value 1 when the Type is Burger. Otherwise,
its value is 0.

As always, we note the value of the slope, and provide a context-based interpretation:
When the Type of a fast food item is Burger, the model predicts that its Fat content,
on average, will be 17.337 grams higher.

With a categorical predictor, the intercept of the model is also meaningful to interpret.
In this example, we could say:

The model predicts that fast food items that are not Burgers will contain, on average,
12.998 grams of fat.

To summarize what we learned from this example

• Assign a value of 0 or 1 to the levels of a binary categorical predictor. This will convert
it into a numerical variable. The category to which 0 is assigned is called the reference
level.

• Proceed as usual to construct a linear or multilinear regression model including the
categorical predictor in its converted numerical form.
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• Write the final model using variable names that make your choice of reference level
clear and explicit. For example, the variable name “Type:Burger” makes it explicit
that the reference level is “not Burger” because it corresponds to Type:Burger=0.

• Interpret the intercept of the model as its average prediction for the reference level,
and the slope as the average change predicted with a change to the non-reference level.

A critically important question overlooked in this example is: What about the assumptions
and conditions? The strategy used in the example is, essentially, a form of simple linear
regression between two numerical variables. Thus, the conditions that must be satisfied are
similar, and can be summarized as:

1. The residuals at both levels of the binary
variable must be approximately normally dis-
tributed, with mean=0 (see graph for refer-
ence).

2. The residuals at both levels must have about
equal variance.

3. the data must consist of independent observa-
tions.

The linearity condition is automatically satisfied for
a binary predictor, since there are only two levels.

Generalization to non-binary predictors

When there are more than two categories in a predictor, as is true in many applications,
the usual strategy is to split the predictor into multiple binary predictors. For instance, if a
categorical predictor has k distinct levels, it can be split into k − 1 binary predictors.

To illustrate, let us revisit the movies example we saw earlier. Our multilinear model for
predicting USGross based on the predictors Budget, Stars and Run Time had the form

̂USGross = b0 + b1(Budget) + b2(Stars) + b3(Run Time)

Suppose we want to expand the model and also include the categorical predictor Genre, which
consists of the 4 levels: Action, Comedy, Drama, Horror. We will replace Genre with
the following 3 binary predictors: Genre:Action, Genre:Comedy, Genre:Drama. Each of
these predictors has value 0 or 1, depending on the movie’s Genre. For instance, if the
movie’s Genre is Comedy, then Genre:Comedy=1, and Genre:Action = Genre:Drama = 0.
On the other hand, if the movie’s Genre is Horror, then Genre:Action = Genre:Comedy =
Genre:Drama = 0. This makes Horror the reference level for Genre, because it is the default
category when a movie is not of any of the named binary types.
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The final MLR model would have the form

̂USGross = b0 + b1(Budget) + b2(Stars) + b3(Run Time)

+ b4(Genre:Action) + b5(Genre:Comedy) + b6(Genre:Drama)

Once the model is formulated, the process for finding the slope coefficients b0, . . . , b6 remains
the same – it is based on finding the best fit to the given dataset, by minimizing the sum of
the square of the residuals. This is generally done using technology/software.

The overall process illustrated in this example readily extends to any number of categorical
predictors, with any number of levels. However, it is important to note that increasing the
number of predictors in an MLR model is neither desirable nor does it necessarily improve
the model’s reliability. In fact, for large-data applications that contain many variables, the
question of how many predictors to use, and how to select the optimal ones, is so important
that we will shortly devote an entire section to this topic.

1.3 Inference strategies for MLR

As with simple linear regression, the larger goal in MLR is to model the characteristics of
some underlying population from which we draw a representative sample. Although our
primary interest is in the population, the MLR model is developed entirely based on a single
sample. Thus, a key task that remains is to develop rigorous and reliable strategies to extend
sample-based understanding to population-based understanding. This is one of the key goals
of inference methods.

In many modern MLR applications, the number of variables available to choose as predictors
is large. In such situations we strive to select a smaller subset of the available variables, since
it is generally not a good idea to use all of them as predictors. Inference methods also play
an important role in this process of model optimization, by offering quantitative yardsticks
based on which we can select an optimal set of predictors.

Before getting into details, it is helpful to clearly summarize the context and notation. As
in the previous sections, we assume our MLR model contains k predictors, and has the form

ŷ = b0 + b1x1 + b2x2 + . . .+ bkxk (1.7)

The slope coefficients b0, . . . , bk are estimated by fitting the model to some sample dataset
using least squares. This model approximates the true multilinear model for the underlying
population, which is assumed to have the form

ŷ = β0 + β1x1 + β2x2 + . . .+ βkxk (1.8)

Each βi in (1.8) is the true slope coefficient, for which the corresponding bi in (1.7) is an
approximation. We will introduce inference strategies to address the following questions:
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1. Does the model in (1.7), taken as a whole, provide statistically significant predictions
of the response? Technically, this is equivalent to asking whether at least one of the βi
in (1.8) is non-zero.

2. For each specific i, is the estimated bi statistically significant? This is equivalent to

asking whether the ith predictor has a significant relationship to the response, given
all the other predictors in the model.

3. Given a specific set of values for the predictors, say {xc1, xc2, . . . , xck}, what is the margin
of error in the predicted response? This is analogous to computing confidence intervals
and prediction intervals for ŷ, as we did earlier for a single predictor.

In the rest of this discussion, we will assume the reader is familiar with basic inference
techniques for the single predictor case.

Significance of the model as a whole

This is essentially asking whether equation (1.7), taken together with the estimated values
of b0, . . . , bk, provides statistically significant predictions of the response. A hypothesis test
based on the ANOVA framework is typically used to answer this question. We do not assume
the reader has any background in ANOVA, nor is that necessary for a basic understanding
of the inference processes we describe here. Our emphasis is primarily on the conceptual
framework, logic, and interpretation of the significance test. Almost all the needed compu-
tations will be done using software.

The hypothesis test follows the usual sequence of steps. Before carrying out the mechanics,
it is important to verify that the data satisfy the required conditions for MLR: Linear
relationship between response and each predictor, normal residuals, constant variance, and
independent observations. To help us understand the hypotheses, consider a relationship of
the form (1.8) such that none of the predictors has any effect on the response. Then, clearly
β1 = β2 = . . . = βk = 0. The logical complement of this statement is: βi 6= 0 for at least one
i ∈ {1, 2, . . . , k}. This understanding will help us formulate the hypotheses. The steps for
carrying out the test are summarized below.

Hypothesis test for significance of MLR model as a whole

This test is performed after computing the slope estimates bi. A suitable significance level,
say α, is chosen in advance. This is the threshold probability below which a P -value will
be considered significant.

1. Verify that the data satisfy the required conditions for MLR.

2. Hypotheses
H0 (Null hypothesis): βi = 0 for all i ∈ {1, 2, . . . , k}
HA (Alternate hypothesis): βi 6= 0 for at least one i ∈ {1, 2, . . . , k}.
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3. The test statistic is computed using software, based on ANOVA theory. It is known
as the F -statistic, and it comes with an associated df (degrees of freedom) value.
It basically measures how much the residuals from our sample-based model differ
from those we would get if the null hypothesis were true. Let F̂ denote the value
of the F -statistic for our model.

4. Compute the P -value, which is the probability that F > F̂ on the appropriate
probability distribution curve. Typically, software output includes the P -value.

5. If P -value < α, reject the null hypothesis and conclude the sample provides strong
evidence that at least one βi 6= 0. Thus, at least one predictor does have an effect
on the response.
If P -value > α, retain the null hypothesis. The sample does not provide evidence
that the model as a whole is a significant predictor.

We emphasize that the most important aspect of this test is a nuanced understanding of its
logic, and how to interpret its results. Its computational aspects are far less important, and
they are handled by software, in any case. Accordingly, here are some key observations

• If the test results indicate that the model as a whole is a significant predictor, it does
not mean that every predictor in that model is significant. It only means that at least
one of the βi 6= 0.

• Conversely, if the results indicate that the model is not a significant predictor, it is still
possible that one or more of the individual variables is a significant predictor.

These conclusions follow from the fact that our hypothesis test strictly looks at the effect of
all the predictors acting together. If we repeat the test with different subsets of the same
predictors – or with a single predictor acting alone – the results will generally not be the
same. This fact is important to keep in mind, as it plays a key role in model optimization
strategies which we will discuss later.

For illustration, consider the MLR model we computed earlier for the movies dataset

̂USGross = −22.9898 + 1.1344(Budget) + 24.9724(Stars)− 0.4033(Run Time)

The corresponding model for the underlying population would have the form

̂USGross = β0 + β1(Budget) + β2(Stars) + β3(Run Time)

To test for the significance of the the model as a whole, the hypotheses would be
H0: β1 = β2 = β3 = 0
HA: At least one of β1, β2, β3 is not 0
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Here is a copy of the R output we saw earlier

The last line says: “F-statistic: 34.83 on 3 and 116 DF, p-value: 3.997e-16”
It is telling us the results of the significance test on the model as a whole. The F value
is 34.83 with 3 predictors and 116 degrees of freedom. In MLR modeling, the degrees of
freedom is given by: df = n − k − 1, where n is the sample size, and k is the number of
predictors. The P -value shown here indicates that if the null hypothesis is true, then there is
a 3.997×10−16 probability of a valid sample producing F = 34.83. Since this P -value is very
small, had our movies dataset been a valid sample, we would reject H0 and conclude that at
least one of β1, β2, β3 is not 0. However, we’ve seen previously that the movies dataset does
not satisfy all the needed conditions, and so we cannot conclude anything meaningful here.

Significance of individual predictors

It is helpful to first clarify the question we are asking:

Does the jth predictor have a significant effect on the response, given all the other
predictors in the model?

We will address this question using both hypothesis tests and confidence intervals. The hy-
pothesis test is carried out using similar steps and logic, except we revert back to computing
a t-statistic instead of an F -statistic. As usual, the test results are only valid when the

assumptions and conditions are satisfied. The hypotheses to test whether the jth predictor
is significant are

H0: βj = 0, given all the other predictors in the model.
HA: βj 6= 0, given all the other predictors in the model.

Although the movies example does not satisfy the assumptions and conditions, we will con-
tinue to use it to illustrate the mechanics of our tests. Accordingly, suppose we wanted
to test whether Run Time is significant, given the other two predictors in our model, the
hypotheses would be
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H0: β3 = 0, given the other two predictors in the model.
HA: β3 6= 0, given the other predictors in the model.

The test statistic, which is based on the t-distribution, is computed in almost the same way
as we do for the single predictor case

ts =
estimated slope− hypothesized slope

standard error of the estimate
=

b3 − 0

SE(b3)
, (df = n− k − 1)

From the software output we get b3 = −0.4033, and SE(b3) = 0.2513. Therefore, ts =
−0.4033
0.2513

= −1.6049 on 116 df . The corresponding P -value, via R code, is

pt(-1.6049, df=116)*2 # we use *2 because the test is two-sided

> 0.111235

This represents about an 11.1% probability, and depending on the choice of α, the outcome
could go either way. If we take α = 0.05 (a widely used value in many applications), we
would conclude that Run Time is NOT a significant predictor, given the overall model.

Notice that the t-score and P -value for each predictor are also included in the regression
output from R. However, we still recommend developing a clear understanding of the logic
and computations, as this will make it possible to use the test in special situations beyond
the default that is included in the regression output.

Confidence intervals are another common tool used for inferences on slope estimates of
individual predictors. The logic and computations are nearly identical to those of any other
standard confidence interval, which is summarized by the formula

confidence interval = point estimate ± t∗ × (standard error of the estimate)

The point estimate and standard error of the estimate are provided in the software output,
and t∗ is based on n − k − 1 degrees of freedom. For the Run Time predictor in the movies
example

point estimate = b3 = −0.4033
t∗ = 1.98 (for 95% confidence, with df = 116; R-code: qt(0.975,df=116))
standard error of the estimate = SE(b3) = 0.2513
CI = −0.4033± (1.98)(0.2513) = [−0.901, 0.094]
Interpretation: When all other variables are held constant, for each additional minute
of run time, the model predicts that on average the change in a movie’s USGross will
be between a decrease of 0.901 million dollars to an increase of 0.094 million dollars.
Since the CI includes 0, we would infer that Run Time is not a significant predictor
of USGross when all the other variables are included in the model.

Confidence intervals for the predicted response

When we use an MLR model for forecasting the response to a given input predictor set,
there are certain key sources of variability in the predictions. The first is due to sampling
variability, or the fact that our model is based on a sample, which is necessarily different
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from the underlying population. Another source of variability is due to the fact that even a
model based on the entire population only predicts the average response to a given input.
Of course, this is also true in simple linear regression with only one predictor variable. And,
just as we saw for the one predictor case, there are two types of confidence intervals for the
predicted response

1. Prediction interval for the individual response to a specific input set.

2. Confidence interval for the mean response to a specific input set.

The variability in the individual response is always higher than the variability in the mean
response. For this reason, a prediction interval is always wider than a confidence interval
for any given input set. Both of these intervals are valid under the same assumptions and
conditions as before, and follow the same type of computational format, with n − k − 1
degrees of freedom

confidence interval = point estimate ± t∗ × (standard error of the estimate)

The key difference between the two intervals is in how we compute the standard error of the
estimate, which is based on the underlying probability distribution model for each type of
interval. Following our usual practice, we will simply summarize the relevant formulas here,
without getting into details of the theory.

Assume our MLR model has been fit to a data set consisting of n cases (or observations),
with k predictor variables, whose values are denoted by the n× 1 vectors x1,x2, . . . ,xk. For
example, suppose the data consists of the following spreadsheet

Item # Fat (g) Calories Protein (g)
1 27 530 24
2 14 280 3
3 9 430 8
4 26 520 30
5 38 630 26

where we want to predict Fat, using Calories and Protein as predictors. Then n = 5, k = 2,
and

x1 =


530
280
430
520
630

 , x2 =


24
3
8
30
26


Our goal is to find a confidence interval for the predicted response, given some specific set
of input predictor values. Let us denote this input set of predictors by the k × 1 vector
x0 = {x01, x02, . . . , x0k}T . An example of this for the nutrition data shown above might be,
x0 = {400, 15}T .
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Using this notation, the standard error of the estimate for a confidence interval is

SEµ = se

√
xT0 (XTX)−1 x0 (1.9)

and for a prediction interval it is

SEp = se

√
1 + xT0 (XTX)−1 x0 (1.10)

Here se is the residual standard error, which is usually given in the regression summary
output, and X is an n× (k + 1) matrix consisting of the predictor variables in the data set

X = [1,x1,x2, . . . ,xk]

The first entry is an n × 1 vector of 1’s, and the remaining entries are n × 1 vectors of the
predictor variables, as defined earlier.

We note that due to the cumbersome nature of the computations involved in equations
(1.9)-(1.10), we seldom compute these standard errors by hand. Nevertheless, the form of
these equations does provide useful insights into the predicted response, and the sources of
variability associated with it.

To illustrate how to use R for computing these intervals, consider the nutrition dataset
above, where n = 5 and k = 2. The following R code inputs the data into a dataframe,
performs MLR, and computes the predicted response for x0 = {400, 15}T , together with
95% confidence and prediction intervals.

# Example to illustrate how to compute confidence & prediction

# intervals in an MLR setting. This example uses a very small

# dataset that we will input manually.

# Define the values of the variables in the dataset

Fat_g = c(27, 14, 9, 26, 38)

Calories = c(530, 280, 430, 520, 630)

Protein_g = c(24, 3, 8, 30, 26)

# Combine the variables into a dataframe that

# I will call "nutdata"

nutdata = data.frame(Fat_g, Calories , Protein_g)

# Construct MLR model to predict Fat , using Calories and

# Protein as predictors

nutout = lm(Fat_g ~ Calories+Protein_g, data=nutdata)

# Uncomment next line to see regression summary output

#summary(nutout) # uncomment this line to see regression

# Define a dataframe with new input values of predictors
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newfooditem = data.frame(Calories =510, Protein_g=15)

# Compute 95% confidence and prediction intervals

predict(nutout , newdata=newfooditem , interval="prediction",

level =0.95)

predict(nutout , newdata=newfooditem , interval="confidence",

level =0.95)

The output, shown below, displays the predicted response, together with lower and upper
bounds of the corresponding interval

In this example, the predicted fat content in a food item that contains 510 calories and 15
grams of protein is about 22.87 grams. The 95% prediction interval is [−19.69426, 65.4399]
grams, and the 95% confidence interval for the mean response is [−1.039807, 46.78545] grams.
Of course, a negative value for the amount of fat is not meaningful here, and we could just
as well replace the lower bounds with 0. Note, also, that this dataset does not satisfy the
necessary conditions for inference. Our primary intent here was to illustrate the use of R
functions for computing confidence and prediction intervals in a simple setting.

1.4 Model optimization: How to select predictors

In many MLR applications, one of the most important questions that affects the quality
of the model is how to choose the best predictor variables. This is especially true when
datasets are large, and there are several variables available to choose from. The topic of
model optimization strives to address this question.

A widely accepted guideline in model optimization is the principle of parsimony: The best
model is the one that uses the smallest number of predictors needed to accomplish the
modeling goals. For example, suppose we want a model that provides the closest fit to our
sampled data. Then it would be reasonable to seek a set of predictors that yields the highest
adjusted R2 value. Recall, R2

adj provides a direct measure of the closeness of a model’s fit
to the given data. Thus, if the dataset satisfies the necessary assumptions and conditions,
we expect such a model to offer the highest prediction accuracy. There are two algorithmic
strategies commonly used to achieve a goal such as maximizing R2

adj

• Backward elimination

• Forward selection
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Both strategies, essentially, offer a systematic process for trying different combinations of
the available predictors, and choosing the set that works best. To illustrate, let us consider a
hypothetical dataset that has 4 variables available to choose as predictors in an MLR model.
Let us denote these variables as x1, x2, x3, x4.

In the backward elimination method, we start with the full model that includes all 4 of
the available predictors. The model looks like

ŷ = b0 + b1x1 + b2x2 + b3x3 + b4x4

The slope coefficients b0, . . . , b4 are computed by fitting the model to the given dataset in
the usual way. The software output will tell us the adjusted R2 for this model. Next, we
seek to eliminate any variables that are not good predictors, using the following steps

Step 1: Re-fit the model after dropping one variable at time, and check the new R2
adj. The

table shows an example of the outcome we might see

x1 x2 x3 x4 new R2
adj

× X X X ↓
X × X X ↑
X X × X ↓
X X X × ↓

The first row shows that when x1 is dropped, the resulting new model has lower R2
adj. Thus,

x1 is a good predictor, and we must retain it in the model. On the other hand, when x2 is
dropped, R2

adj goes up. Thus, we drop x2 from the model. The remaining rows show that
x3 and x4 are also good predictors that we must keep. If dropping two (or more) predictors
causes R2

adj to increase, we only drop the one that yields the highest increase in R2
adj.

Step 2: Our reduced model now looks like

ŷ = b0 + b1x1 + b3x3 + b4x4

where the slope coefficients are recomputed by fitting the model to the given dataset, re-
sulting in a new R2

adj. We repeat the process of dropping one variable at time, refitting the
model, and checking the R2

adj. The table shows an example of the outcome we might see

x1 x3 x4 new R2
adj

× X X ↓
X × X ↓
X X × ↑

In this example we drop x4 from the model, since it causes R2
adj to go up.

Step 3: Repeat the process – refit the reduced model to the given dataset, drop one variable
at time, and check the R2

adj.
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x1 x3 new R2
adj

× X ↓
X × ↓

Conclusion: The remaining predictors (x1 and x3) comprise the optimal model, since drop-
ping either of them will decrease the adjusted R2. Thus, our final model looks like

ŷ = b0 + b1x1 + b3x3

The forward selection method of MLR model optimization starts with no predictors in
the model. Thus, the initial model looks like

ŷ = b0

Predictors are added to the model one by one, following a sequence of steps that assesses
their effect on R2

adj. The steps below show an example of how this process is carried out.

Step 1: Re-fit the model after adding one predictor at a time, and check the R2
adj. For

example, here is what it might look like:

R2
adj %

x1 56.3
x2 35.1
x3 59.5
x4 14.7

Since x3 has the largest R2
adj, we include it in the model. Thus, the model now looks like:

ŷ = b0 + b3x3, and the corresponding R2
adj = 59.5 %.

Step 2: Repeat the process – add one (of the remaining) predictors at a time, refit the
model, and check the R2

adj. For example

R2
adj %

x1 + x3 64.7
x2 + x3 55.4
x4 + x3 54.8

We add x1 to the model, since it increases the R2
adj the most. The resulting model is

ŷ = b0 + b1x1 + b3x3, with R2
adj = 64.7 %.

Step 3: Repeat the process – add one (of the remaining) predictors at a time and check
R2
adj. For example

R2
adj %

x2 + (x1 + x3) 59.1
x4 + (x1 + x3) 54.9
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Conclusion: None of the remaining predictors increases the R2
adj. So the optimal model

consists of the predictors x1 and x3.

Example:

The file cars.csv contains data on fuel efficiency and related variables for 34 cars manufac-
tured in three different countries. The variables include MPG (miles per gallon), weight of
the car (in tons), number of cylinders, horsepower, and country of origin. The header of the
file, together with the R code that produced it are given below.

carsdat = read.csv(file="https://cs.earlham.edu/~pardhan/sage_

and_r/cars.csv", header=TRUE , sep=",")

head(carsdat)

Assume these data satsify all the needed conditions for MLR, and find the optimal model
for predicting MPG from the other variables.

Solution
We will take the optimal model to be the one that maximizes the adjusted R2. Our response
variable is MPG and the available predictor variables are Weight, Cylinders, Horsepower,
and Country. We note that Country is a categorical predictor with 3 levels: Japan, U.S.,
Germany.

Using the backward elimination strategy, we begin by including all the available predictor
variables. The resulting linear model is summarized in the following R output

Observe that R2
adj = 0.8695 for this full model.
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Next, we refit the data after dropping one variable at a time The resulting R2
adj values are

shown in the table below

Dropped variable R2
adj

Country 0.8401
Horsepower 0.873
Cylinders 0.874
Weight 0.7512

As seen in the table, R2
adj increases the most when Cylinders is dropped. The resulting

model contains the 3 predictors Weight, Horsepower, Country, with R2
adj = 0.874. Con-

tinuing the process, we refit the data after dropping one variable at a time and recompute
R2
adj

Dropped variable R2
adj

Country 0.8452
Horsepower 0.8772
Weight 0.7158

The R2
adj increases slightly when Horsepower is dropped. Thus, we proceed to the next

model, which consists of two predictors Weight, and Country, with R2
adj = 0.8772. Again,

we refit the data after dropping one variable and check R2
adj

Dropped variable R2
adj

Country 0.8498
Weight 0.1505

The table shows that R2
adj decreases if we drop either of the two remaining predictors. Thus,

the final MLR model that maximizes R2
adj consists of the predictors Weight and Country.

Using the coefficient values given in the summary output below, the optimal model is

M̂PG = 47.7116− 8.917(Weight) + 1.9135(Country:Japan) + 3.6806(Country:U.S.)

Note that in this example, if we use the forward selection algorithm instead of backward
elimination, we arrive at the exact same result. It is left as an exercise for the reader to
carry out the forward selection algorithm and show this.
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Remark: There are situations where forward selection might produce a slightly different
model than backward elimination. In such situations we recommend picking the model with
the larger R2

adj.

Other criteria for model optimization

At this point we have discussed optimal model selection based solely on one criterion, namely
maximizing R2

adj. Another commonly used optimization criterion involves minimizing the
P -values. In this approach, variables are selected for inclusion in the model if they are sig-
nificant predictors, as indicated by their P -value. The end result is a model that contains
only those predictors whose P -value is below some chosen significance level. The process
is carried out using algorithmic strategies similar to the backward elimination and forward
selection procedures seen earlier.

To illustrate, consider the cars dataset seen in the previous example, and suppose we want
to use backward elimination to select significant predictors with P -value below, say, 0.05.
As before, we start with the full model that includes all four of the available predictors:

M̂PG = b0 + b1(Weight) + b2(Cylinders) + b3(Horsepower)

+b4(Country:Japan) + b5(Country:U.S.)

The corresponding output, after fitting the model to the data, is

The last column in the table of coefficients shows the P -value associated with each predictor.
We look for predictors with P -value ≥ 0.05 and drop the one with the largest P -value. In
this example, Cylinders will be dropped, since it has the highest P -value.

We refit the model with the remaining predictors and repeat the process
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This time Horsepower is dropped, since it’s P -value is the largest.

Continuing the process, we refit the model with the remaining predictors and obtain

Now we see both the remaining predictors are significant. Note that the categorical predictor
Country is considered significant because it has at least one level (i.e., Country:U.S.) with
P -value < 0.05. Although Country:Japan has large P -value, we cannot drop individual
levels of a categorical predictor. We can only retain, or drop, the variable in its entirety.
Thus our final model, based on retaining only the significant predictors, is

M̂PG = 47.7116− 8.917(Weight) + 1.9135(Country:Japan) + 3.6806(Country:U.S.)

As it turns out, this model is exactly the same as what we found earlier by maximizing R2
adj.

However, this will not always be the case. In general, the results from the P -value method
will depend on the choice of significance level, and we would expect to get somewhat different
models as we vary the significance level.

For completeness, let us look at how to implement the P -value criterion in a forward selection
algorithm. To start the process a model with no predictors is assumed: M̂PG = b0. Next, we
augment the model with each predictor acting alone, carry out linear regression, and note
the P -values
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The smallest P -value is 6.17e-15, and it corresponds to the predictor Weight. So, we include
it in the model, which then becomes: M̂PG = 47.5804− 7.9015(Weight).

Next, we refit the model after adding each of the remaining predictors one at a time. As seen
in the table of coefficients below, only the predictor Country yields a P -value < 0.05. We
reiterate, a categorical predictor is considered significant if at least one of its levels yields a sig-
nificant P -value. In this example, Country:U.S. has P -value < 0.05. Thus, our model now
looks like: M̂PG = 47.7116−8.917(Weight)+1.9135(Country:Japan)+3.6806(Country:U.S.).
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To continue the process, we add each of the remaining predictors to the model and check
the P -values again.



28 CHAPTER 1. MORE GENERAL REGRESSION METHODS

As seen in the tables, none of these predictors produces a significant P -value. Thus, we drop
them, and our final optimized model is

M̂PG = 47.7116− 8.917(Weight) + 1.9135(Country:Japan) + 3.6806(Country:U.S.)

Now that we have seen how to use R2
adj and P -values for optimal model selection, which

method is better? As you might expect, there is no simple or universally accepted answer
to this question. Generally, in situations where prediction accuracy is important, the R2

adj

method is preferred. This is often the case in large data applications such as those seen in
many data science and data analytics projects. However, the P -value method is preferable
in situations where identifying the most influential predictors is an important goal. This
may occur, for example, when a researcher is interested in studying the impact of specific
variables within a dataset or model.

In closing, we note that there are several other optimal model selection criteria in the liter-
ature. Some of these include AIC, BIC, etc. (add brief discussion of these later?)

1.5 Polynomial regression

Given the importance of satisfying the linearity condition in all the regression methods dis-
cussed thus far, an obvious question that readers likely have is: What are my options if
my relationships are not linear? It turns out there are a variety of nonlinear functions used
for fitting regression models in applications that warrant it. Perhaps the simplest of these
is regression with polynomial functions, which is sometimes also called curvilinear regres-
sion. Such functions are particularly straightforward to implement within a linear regression
framework, because the unknown slope coefficents remain in linear form. As a result, the
linear solution techniques developed previously are sufficient for computing the model pa-
rameter values using a least squares minimization process.

To illustrate, consider a cubic model for fitting the relationship between a response variable
y and a predictor variable x. The predicted response would then be

ŷ = b0 + b1x+ b2x
2 + b3x

3 (1.11)
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Let (xi, yi), i = 1, 2, . . . , n, denote the pairwise data values for which we want to find the
best fit. Following the usual least squares process, we define the residuals

ei = yi − ŷi = yi − (b0 + b1xi + b2x
2
i + b3x

3
i ) (1.12)

and the cost function

f(b0, b1, b2, b3) =
n∑
1

e2i =
n∑
1

[
yi − (b0 + b1xi + b2x

2
i + b3x

3
i )
]2

(1.13)

The coefficients b0, . . . , b3 are found by minimizing f , which requires setting its partial deriva-
tives to 0

∂f

∂b0
= −2

n∑
1

[
yi − (b0 + b1xi + b2x

2
i + b3x

3
i )
]

= 0

∂f

∂b1
= −2

n∑
1

[
yi − (b0 + b1xi + b2x

2
i + b3x

3
i )
]
xi = 0

∂f

∂b2
= −2

n∑
1

[
yi − (b0 + b1xi + b2x

2
i + b3x

3
i )
]
x2i = 0

∂f

∂b3
= −2

n∑
1

[
yi − (b0 + b1xi + b2x

2
i + b3x

3
i )
]
x3i = 0

Since the values of (xi, yi) are known, this yields a system of four linear algebraic equations
in the four unknowns b0, . . . , b3. Thus, the computational process for doing cubic regression
with one predictor is about the same as solving a multilinear regression problem with three
predictors. In fact, to take that analogy one step further, let us rewrite equation (1.11) as

ŷ = b0 + b1u+ b2v + b3w (1.14)

where u = x, v = x2, w = x3. Equation (1.14) is, essentially, a linear model for y that
contains 3 predictors, u, v, w. For all practical purposes, we can solve the cubic regression
problem by carrying out multilinear regression on (1.14). This idea generalizes to polynomi-
als of any degree. For example, a polynomial model of degree k with one predictor can be
transformed to an equivalent MLR problem containing k predictors. It is important to note,
however, that polynomials of degree higher than 2 or 3 are rarely ever used in regression.
This is because high-degree polynomials are prone to high-amplitude oscillatory behavior.

Viewing polynomial regression as a special form of multilinear regression is also helpful for
understanding the assumptions and conditions that must be satisfied. Recall, a valid MLR
model must satisfy: Linear relationship between the response and each predictor, normal
residuals, constant variance of residuals, and independent observations. In polynomial re-
gression, the linearity condition is replaced by one that requires the response variable to
have a linear or a polynomial dependence on each predictor. The other conditions remain
the same.
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Example:

The Population Reference Bureau, an international, non-profit, public policy development
organization compiles data on a broad range of demographic, health and other characteristics
of the world’s population. One of their datasets, contained in the file prb data mlr.csv,
provides information on the average income in a sample of 190 countries, together with the
corresponding life expectancy of its people. Here is the file header and the associated R code

prbdat = read.csv(file="https://cs.earlham.edu/~pardhan/sage_

and_r/prb_data_mlr.csv", header=TRUE , sep=",")

head(prbdat ,4)

Key variables of interest include GNI, LE female, LE male. Here GNI represents the Gross
National Income per capita (in 1000 US dollars), LE female and LE male represent the Life
Expectancy at birth of females and males (in years).

Suppose we want a model for predicting LE female using GNI as the predictor. Here is a
scatter plot of the data

Figure 1.4: Scatterplot of female life expectancy vs GNI.

The relationship is, clearly, far from linear. But, we will still go ahead and fit a straight line
model, so that it serves as a baseline for comparing other models. Of course, we will also
keep in mind that the resulting model has no predictive value, as it fails to satisfy at least one
of the required conditions (i.e., linear relationship). Accordingly, here is the regression output
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Thus, the straight line model is

̂LE female = 69.7451 + 0.2434 (GNI) (1.15)

with R2
adj = 0.3836. Incidentally, this R2

adj value is not too bad for applications of this type,
given the challenges and approximations inherent in collecting accurate demographic and
macroeconomic data. However, the fact remains that the model is not valid, since it fails to
satisfy the theoretical conditions.

Next, let us consider fitting a polynomial model to the same data. The first question that
arises is, what degree of polynomial should we choose? It is strongly recommended that the
degree be kept as low as possible to avoid the extreme oscillations that can arise with high
degree polynomials. For this reason, quadratics and cubics tend to be the most common
choice when doing polynomial regression.

In the present example, a quadratic model would have the form

̂LE female = b0 + b1(GNI) + b2(GNI)2 (1.16)

To carry out the regression we treat this as a multilinear problem in two predictors: u =
GNI, v = (GNI)2. The corresponding R code, with summary of regression output and diag-
nostic plots are shown below

# Read datafile and store data in a dataframe

prbdat = read.csv(file="https://cs.earlham.edu/~pardhan/sage_

and_r/prb_data_mlr.csv", header=TRUE , sep=",")

# Fit quadratic polynomial regression model

y = prbdat$LE_female # response variable

u = prbdat$GNI # predictor 1

v = u*u # predictor 2

prbout = lm( y ~ u+v) # regression using lm() function

# Print regression summary

summary(prbout)

# Setup larger margins for plots

par(mar = c(5,5,5,5)) # sets the margins of plot to be bigger
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# Scatter plot original data and quadratic model

plot(prbdat$LE_female ~ prbdat$GNI , xlab="GNI per capita (1000 

USD)", ylab="LE_female (years)", cex.lab=2, cex.axis =2)

lines(prbout$fitted ~ prbdat$GNI , col="#FF0000", lwd=5)

# Plot residuals diagnostics

qqnorm(prbout$residuals , ylab="Residuals", main="", cex.lab=2,

cex.axis =2)

hist(prbout$residuals , xlab="Residuals", breaks=6, main="", cex

.lab=2, cex.axis =2)

plot(prbout$residuals ~ prbout$fitted , xlab="Predicted values",

ylab="Residuals", main="", cex.lab=2, cex.axis =2)

The corresponding output from R:

The regression output indicates that the quadratic model is

̂LE female = 66.28 + 0.6287 (GNI)− 0.00488 (GNI)2 (1.17)

Notice that R2
adj is now 0.5693, indicating a much better fit than the straight line model,

for which the R2
adj value was 0.3836. To check whether the conditions are met, let us first

look at the diagnostic plots in Figure 1.5. Plot (a) suggests it is acceptable to treat the
dependence between LE female and GNI as quadratic. Plots (b)-(c) show that the distribu-
tion of residuals is not perfect, but is close enough to normal, especially for this sample size
(n = 190). In plot (d) the variance of residuals seems to decrease as we go from lower to
higher predicted values. This violates the constant variance condition. There are a couple of
high GNI outliers in the dataset, and it is possible their removal will help with this problem.
Lastly, for the independent observations condition, in the context of this application we will
assume it is met if these data can be considered representative of the world’s countries. It
is not clear if that is true here. To summarize, the constant variance and independent ob-
servations conditions may not be met by this dataset.

To wrap up this example, let us consider fitting a cubic model of the form

̂LE female = b0 + b1(GNI) + b2(GNI)2 + b3(GNI)3 (1.18)
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(a) (b)

(c) (d)

Figure 1.5: Diagnostics for LE female vs GNI quadratic model: (a) Fitted model (in red).
(b) Residuals normal probability plot. (c) Residuals histogram. (d) Residuals vs predicted.

The R code, regression summary and diagnostic plots are shown below.

# Read datafile and store data in a dataframe

prbdat = read.csv(file="https://cs.earlham.edu/~pardhan/sage_

and_r/prb_data_mlr.csv", header=TRUE , sep=",")

# Fit cubic regression model & generate plots

y = prbdat$LE_female

u = prbdat$GNI

v = u*u

w = u*v

prbout3 = lm( y ~ u+v+w)

summary(prbout3)

plot(prbdat$LE_female ~ prbdat$GNI , xlab="GNI per capita (1000 

USD)", ylab="LE_female (years)", cex.lab=2, cex.axis =2)

lines(prbout3$fitted ~ prbdat$GNI , col="#FF0000", lwd =5)

qqnorm(prbout3$residuals , ylab="Residuals", main="", cex.lab=2,

cex.axis =2)
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hist(prbout3$residuals , xlab="Residuals", breaks=6, main="",

cex.lab=2, cex.axis =2)

plot(prbout3$residuals ~ prbout3$fitted , xlab="Predicted values

", ylab="Residuals", main="", cex.lab=2, cex.axis =2)

According to the regression summary, the fitted cubic model is

̂LE female = 64.0 + 1.04 (GNI)− 0.0166 (GNI)2 + 7.67× 10−5(GNI)3 (1.19)

Since R2
adj = 0.6267, the cubic model offers a somewhat better fit than the quadratic. This

can also be seen in Figure 1.6:(a), which displays the cubic fit on a scatter plot of the data
values. However, the rest of the diagnostic plots in Figure 1.6 suggest the behavior of the
residuals is no better than in the quadratic case. In fact, the normal distribution plots are
even less satisfactory than the corresponding ones for the quadratic model. The bottom
line is, both models fall short on meeting the theoretical conditions, and so it would not be
advisable to use them for making predictions.

The overall strategy demonstrated in this example readily applies to any other polynomial
regression problem in one predictor variable. Key points to keep in mind include

• Check the assumptions/conditions.

• Use low degree polynomials.

• Use complete polynomials – i.e., include terms of all orders upto the polynomial degree.

Polynomial regression with more than one predictor is done in a very similar way, but the
functions get rapidly cumbersome as the number of predictors increase. For example, if there
are two predictors (say, u, v) and we use a 2nd degree polynomial, the predicted response
would have the form

ŷ = b0 + b1u+ b2v + b3u
2 + b4v

2 + b5uv (1.20)

and for a 3rd degree polynomial its form would be

ŷ = b0 + b1u+ b2v + b3u
2 + b4v

2 + b5uv + b6u
3 + b7v

3 + b8u
2v + b9uv

2 (1.21)

Note that the problem is still linear in the unknown coefficients (b1, b2, . . . , etc.), and so
it can be readily transformed into a multilinear regression framework by introducing new
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(a) (b)

(c) (d)

Figure 1.6: Diagnostic plots for cubic model: (a) Fitted model (in red). (b) Residuals normal
probability plot. (c) Residuals histogram. (d) Residuals vs predicted.

variables to replace the nonlinear terms. For example, (1.20) can be written in the linear
form

ŷ = b0 + b1u+ b2v + b3w + b4x+ b5z (1.22)

by introducing the variables w = u2, x = v2, z = uv. This effectively transforms the original
2-predictor nonlinear model into a 5-predictor linear model.

To summarize, regression using polynomial functions is relatively straightforward to set up
and implement, because the underlying models remain linear in the unknown parameters.
Thus, the computational procedures are very similar to those of multilinear regression. For
this reason, it is routine practice to use the same software functions and utilities for doing
polynomial regression.

(What is missing: (1) meaning of coefficients; (2) inferences; (3) (maybe?) ex-
ample to demonstrate multiple predictors. )
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1.6 Logistic regression

Earlier in this module we promised to address the topic of categorical response variables,
which comprise an important application class in their own right. Logistic regression is a
key step in that direction, as it provides a strategy to handle binary response variables. For
example, suppose we want to determine whether an attempted credit card transaction online
is a fraud or not. Here the response we seek is simply “yes” or “no” to the fraud question,
while the inputs might include information about the transaction, such as the amount, the
product being purchased, the user’s location, name, purchase history, etc. This is essentially
a classification problem, wherein a bunch of inputs are evaluated to determine whether the
output belongs to class A, or not. Logistic regression is one of the tools used for performing
this type of analysis.

To begin with, it is extremely helpful to invest some effort understanding the mathematical
function that is at the foundation of logistic regression. Accordingly, consider

y =
1

1 + e−(b0+b1x)
(1.23)

with x = independent variable, y = response variable, b0, b1 = some given constants. The
reader will, of course, notice the straight line form of the exponent in the denominator.
Let us explore the graphical properties of y, and their dependence on the parameters b0, b1.
Figure 1.7(a) shows the effect of varying b1, while keeping b0 fixed at 0. Conversely, in Figure
1.7(b), we see the effect of varying b0, while keeping b1 fixed.

(a) (b)

Figure 1.7: The function y = 1
1+e−(b0+b1x)

: (a) Effect of varying b1, with b0 = 0. (b) Effect
of varying b0, when b1 = 1.

Judging from the graphs, what can you tell about the range of y? Does it depend on the
values of b0, b1? How does b1 affect the behavior of y? Let’s summarize our observations
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• The range is 0 < y < 1, regardless of the values of b0, b1. In fact, it is easy to show
that if b1 > 0, then lim

x→ −∞
y = 0, lim

x→∞
y = 1.

• As the magnitude of b1 increases, the graph gets steeper when it transitions from 0 to
1. Although not seen in these graphs, we note that if b1 < 0, the curve flips, and the
y values decrease from 1 to 0.

• Changing b0 shifts the curve horizontally, either left or right.

Putting these observations together, b0 determines the x-location where the curve transi-
tions from low to high y-values, and b1 controls the steepness of the transition. This type
of behavior is particularly suitable for doing binary classification, as logistic regression is
designed to do. The idea is to simply treat the y-value as the probability of belonging to
the class of interest, for example, a fraudulent credit card transaction. This works well as
a classification mechanism because there is a sharp transition from very low probability to
very high probability, when x crosses a threshold value.

Moving on to the technical details, equation (1.23) can be algebraically rearranged as

y

1− y
= eb0+b1x OR ln

[
y

1− y

]
= b0 + b1x

The expression ln( y
1−y ) is known as the logit transformation of y. If we define z = ln( y

1−y ),
this last equation represents a straight line relationship between x and z. Logistic regression
is based on this idea, and from a big-picture standpoint, one may view it as a linear model
for predicting the logit of the response probabilities. However, a word of caution might be in
order, because there are many important differences from linear regression, both in concept
and in implementation. We will address some of these differences here, and leave the rest
for the references.

Let us consider the most essential questions from the point of view of practical, hands-on
modeling. Suppose we want to fit a logistic regression model to a dataset containing n
observations of a pair of (x, y) variables. Assume the predictor x is a numerical variable,
and the response y is a binary/indicator variable whose values are 0 or 1. Let p denote the
probability that y = 1, given some x value. The logistic model for predicting p is

z = b0 + b1x, were z = ln

[
p

1− p

]
(1.24)

Here b0, b1 are coefficients whose values are to be determined by fitting the model to the input
dataset. Before we do that, let us look at the concept of “the odds of an event occuring,”
which arises frequently in statistics. We define it as

odds of A =
probability that A occurs

probability that A does not occur
=

P (A)

1− P (A)

For example, the odds of tossing a coin twice and getting both heads are 1/4
1−1/4 = 1

3
. We say,

the odds of getting both heads are 1 to 3. Similarly, the odds of NOT getting a 6 if we roll a
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fair 6-sided die are 5/6
1−5/6 , or 5 to 1. Notice that the numerical value of odds can range from

0 to ∞, although probability values only range from 0 to 1. When we take the natural log
of the odds, we get what is known as the “log odds.” Thus, log odds range from −∞ to ∞,
which makes it possible to model them with a straight line.

Returning to equation (1.24), notice that it is simply a linear model for predicting the log odds
of y = 1 based on the value of x. In fact, these ideas readily generalize to multiple predictors,
and the general form of the logistic regression model for predicting p, the probability that
y = 1, with k predictors is

z = b0 + b1x1 + b2x2 + . . .+ bkxk, were z = ln

[
p

1− p

]
(1.25)

As usual, (x1, . . . , xk) denote the predictors, and (b0, b1, . . . , bk) the slope coefficients. To
predict the response ŷ we first find z, and then compute p by inverting the formula z =
ln[p/(1 − p)]. The resulting p will be a value between 0-1, and represents the probability
of belonging to the category y = 1. Typically, if p < 0.5, the predicted response is ŷ = 0;
otherwise, it is ŷ = 1.

So, how do we compute the slope coefficients b0, . . . , bk? This is the same as asking, how do we
best fit equation (1.25) to the given data? Unfortunately, the simple least squares approach
we used in linear regression does not work here. The key difficulty is that we cannot plug
data values into our model equation and compute residuals, as we do in linear regression.
This is because our data does not provide the values of p, the probabilities corresponding to
each set of observations. Moreover, we cannot use the observed y-values in the place of p,
because they will result in z = +∞, or z = −∞. Consequently, a new optimization approach
is needed to fit the model to the data, in order to estimate the values of b0, . . . , bk. In this
new approach, the quality of the model’s fit is measured by the “likelihood” function, which
is defined as

L =
n∏
i=1

p̂yii (1− p̂i)1−yi were p̂i =
1

1 + e−ẑi
(1.26)

Subscript i represents the ith data point in the sample, n is the sample size, yi is the ith

response value, p̂i is the predicted response, and ẑi is obtained from equation (1.25) using the

ith set of predictor values. Note that ẑi contains the unknowns b0, . . . , bk, and so it cannot
be explicitly computed. Consequently, for a given input dataset, L is a nonlinear function
of the parameter set {b0, . . . , bk}.

It can be shown that the numerical value of the likelihood, L, increases as the model in
(1.25) gets closer to fitting the data. Thus, the goal of the optimization strategy in logistic
regression is to find the set {b0, . . . , bk} that maximizes the likelihood. In practice, it is usual
to take the log of equation (1.26) and maximize the log-likelihood instead. This transforms
the product sequence into a sequence of sums, and we get

ln(L) =
n∑
i=1

[yi ln(p̂i) + (1− yi) ln(1− p̂i)] (1.27)
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There is no closed-form solution for maximizing ln(L), and some form of iterative strategy
is typically employed to estimate the optimal values of {b0, . . . , bk}. A detailed exposition of
the optimization process is beyond the scope of the present work.

Some additional concepts (optional reading)

It is useful to draw some parallels between these ideas and the usual least squares
approach used in linear regression. The quantity −2 ln(L) is known as the deviance
of the model, and is analogous to the the sum of the squares of the residuals (RSS)
in linear regression. When we maximize the log-likelihood in logistic regression, we
essentialy minimize the deviance. This is analogous to minimizing the RSS in linear
regression.

Residuals are defined in a variety of different ways in logistic regression. The simplest of
these is the raw residual, which is essentially identical to how residuals are defined in
linear regression

ri = yi − p̂i (raw residual) (1.28)

Here yi is the observed response at the ith data point, and p̂i the predicted probability.
When this residual is scaled by the standard deviation of its distribution, we get the
Pearson residual

ρi =
yi − p̂i√
p̂i(1− p̂i)

(1.29)

The deviance residual is another common variant, and it is defined such that the sum
of its squares equals the deviance of the model

di = sign{yi − p̂i}
√
−2[yi ln(p̂i) + (1− yi) ln(1− p̂i)] (1.30)

Deviance residuals are, in fact, what the optimization algorithm tries to minimize.

Another important concept is that of null deviance, which is a measure of how well a
model containing only an intercept term predicts the response. In contrast, the residual
deviance measures how well the response is predicted when the model includes all the
predictors of interest. For a good model, we would expect the residual deviance to be
much smaller than the null deviance. In fact, the magnitude of the difference between
these two deviances is often used as a χ2 test statistic for performing a hypothesis test
on the significance of the model.

To illustrate the use of these ideas for performing binary classification, let us consider an ex-
ample. Email spam filters are basically a mechanism for classifying mail coming into a user’s
inbox as “spam” or “not spam” based on algorithmic checks of the source and contents of the
message. Modern-day spam filters are extremely complex, and incorporate numerous input
variables to perform spam classification. To keep things clear and simple, in this example we
consider a “toy” version of a spam filter that only incorporates 3 input variables, based on
the frequency of occurrence of certain keywords in the email message. The keywords are: (1)
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win, (2) free, and (3) hurry. We will construct the spam filter by fitting a logistic regression
model to a training dataset consisting of 200 email messages whose keyword count and spam
status are known. Accordingly, here are the first few lines of the dataset, together with the
associated R code

emaildat = read.csv(file="https://cs.earlham.edu/~pardhan/sage_

and_r/mock_email_data.csv", header=TRUE , sep=",")

head(emaildat ,4)

We assume this dataset satisfies the conditions for logistic regression, which will be dis-
cussed in detail later. The response variable is spam, and it contains the binary categories
TRUE/FALSE. The predictor variables are numerical, and are named win, free and hurry.
Thus, the logistic model for predicting the probability the message is spam has the form

ẑ = b0 + b1(win) + b2(free) + b3(hurry)

p̂ =
1

1 + e−ẑ
(1.31)

We fit the model to the given dataset using the R function glm(), which stands for generalized
linear model. The usage of this function is very similar to the lm() function that we’ve
been using for multilinear regression, except we will give it an addtional input to indicate we
want a model for predicting binary probabilities. Here is the corresponding code segment,
followed by the output it produces

emaildat = read.csv(file="https://cs.earlham.edu/~pardhan/sage_

and_r/mock_email_data.csv", header=TRUE , sep=",")

gmod = glm (spam ~ win+free+hurry , data=emaildat , family=

binomial)

summary(gmod)
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Although this output includes a variety of details, for our present purpose we focus on the
coefficients table, which indicates the fitted model is

ln

[
p̂

1− p̂

]
= ẑ = −3.6378 + 0.4265(win) + 0.4269(free) + 0.9059(hurry) (1.32)

Thus, for example, if an email contains the keyword counts win = 2, free = 1, hurry = 4,
then the predicted probability of spam can be computed as

ẑ = −3.6378 + 0.4265(2) + 0.4269(1) + 0.9059(4) = 1.2657

p̂ =
1

1 + e−1.2657
= 0.78

The probability that this message is spam is 0.78. For the purpose of binary classification,
the user must choose a threshold probability that determines what class the response belongs
to. For example, a standard choice is 0.5. With that choice, if p̂ = 0.78, the email would be
classified as spam.

Many conceptual ideas from linear regression can be readily extended to this new setting.
For instance, we can associate practically useful meaning to the value of the slope coefficients.
In the spam filter example, the coefficient of win in equation (1.32) is 0.4265. Thus, for each
additional occurrence of the keyword “win” in an email, the model predicts the log odds
of the message being spam increase by 0.4265 on average, when all other variables are held
constant. But. . . what does that really mean from a practical standpoint? Let’s take a
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closer look:

win increases by 1 ⇒ ẑ increases by 0.4265

⇒ ẑnew − ẑold = 0.4265

⇒ ln

[
p̂new

1− p̂new

]
− ln

[
p̂old

1− p̂old

]
= 0.4265

⇒ ln[odds new]− ln[odds old] = 0.4265 (where odds =
p̂

1− p̂
)

⇒ ln

[
odds new
odds old

]
= 0.4265

⇒ odds new
odds old

= e0.4265

The fraction in this last line is known as the odds ratio. Thus, we can say that for each ad-
ditional occurrence of the word “win,” the odds ratio of the message being spam is predicted
to be e0.4265 ≈ 1.53, on average, when all other variables are held constant. That means
whenever win increases by 1, the odds of the corresponding email being spam are multiplied
by 1.53, all else being held constant. Of course, it is not surprising that the response changes
nonlinearly as a function of the predictor, given the nonlinear model we are using here. The
other slope coefficients can also be interpreted in a similar way.

For the interested reader, we would like to also briefly describe what the rest of the software
output in this example indicates. We have defined deviance residuals in the optional reading
supplement above. A 5-number summary of these residuals is provided near the top of the
output. The coefficients table includes the usual details about standard errors and P -values
that are needed for carrying out inference tests. The null deviance indicates that a model
containing no predictors would have a deviance of 272.74, while the residual deviance says it
would be 187.14 if all three predictors are included. Since the residual deviance is smaller,
it shows that inclusion of the three predictors does produce a model with a closer fit to the
data. The degrees of freedom for the null deviance is 199, because it corresponds to only
one unknown parameter (the intercept), with a sample size of 200. Likewise, df = 196 for
the residual deviance since it includes 4 parameters (b0, b1, b2, b3). The last line indicates the
number of iterations that were needed for the optimization algorithm to converge. We usually
don’t worry about this number, unless it gets very large, suggesting possible convergence
problems.

Assumptions and conditions

As with all regression models, there are certain important theoretical requirements that must
be met for logistic regression to provide a reliable and valid predictve model. Interestingly,
some of the essential conditions for linear regression are not required for logistic regression.
These include

• Linear relationship between response and each predictor.
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• Normally distributed residuals.

• Constant variance of residuals.

Instead, logistic regression requires satisfying the following conditions

1. The response variable must be binary.

2. The logit (or log odds) of the predicted probabilities must be linearly related to each
predictor, with no significant outliers.

3. The data must consist of independent observations.

Let us try to check these conditions for the spam filter example discussed earlier. The re-
sponse variable is spam, which is certainly binary since it can only have a value of TRUE or
FALSE. Figure 1.8 shows plots of the predicted logit versus each predictor. These are con-
ditional density plots that show the binary category of the predicted response as a function
of the predictor values. While these plots exhibit a generally downward sloping trend, it is
not clear how close they are to a linear pattern. As for the third condition, the data were
generated randomly for the purpose of demonstration in this example. Thus, it is reasonable
to conclude the observations are independent. To summarize, we can say this dataset clearly
satisfies two of the three listed conditions. Linear relationship between the logit and each
predictor is less well satisfied.

Figure 1.8: Conditional density plots showing predicted response versus each predictor for
the spam filter example.

Another diagnostic measure commonly used for assessing the model’s prediction accuracy
is to see how well it predicts the responses in the input dataset. To do this, the predicted
probabilities are converted to a binary response, and these results are compared with the
actual response in the dataset. This is analogous to computing residuals in situations where
the response is numerical. The only difference is that a binary response is either predicted
“correctly,” or “incorrectly.” Thus, we can compute the proportion of correct predictions for
the input dataset and get a quantitative measure of accuracy. For the spam filter example, if
we choose a threshold probability of 0.5, the model correctly classifies 78.5% of the cases in
the input dataset. In a practical application setting, the best practice would be to use a test
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dataset that is separate and independent of the input (or, training) dataset, to assess the
model’s prediction accuracy. This is analogous to the strategies used in supervised machine
learning, were a model is developed using one set of data, and tested using a similar but
independent dataset.

Inference methods

For convenience, we repeat the general form of the logistic regression model given in equation
(1.25)

ln

[
p̂

1− p̂

]
= ẑ = b0 + b1x1 + b2x2 + . . .+ bkxk (1.33)

where x1, . . . , xk denote k predictors, p̂ is the predicted response (a probability), and b0, b1, . . . , bk
are regression coefficients to be determined by fitting the model to the input data. Some in-
ference strategies from multilinear regression can be applied to the logit ẑ, since it is linearly
related to the predictors.

Typically, the first inference question of interest is whether the model, taken as a whole, is
a significant predictor of the response. For this we use a significance test that hypothesizes
the true slope coefficient of all the predictors is 0. In other words

H0 : β1 = 0 = β2 = . . . = βk (1.34)

Notice that we continue to use the β-symbol to denote slope parameters when they corre-
spond to the underlying population as a whole. The fitted model provides sample-based
estimates for their values, respectively denoted by b1, . . . , bk. To show the overall model is
a significant predictor, we must demonstrate strong evidence that βi 6= 0 for at least one i
in {1, 2, . . . , k}. This is done by computing a test-statistic based on the estimated model
coefficients, and then using it to compute a P -value.

One standard way of computing this type of test statistic is by comparing the ratio of the
likelihood of the full model to that of the reduced model. This is known as the Likelihood
Ratio Test. Typically, the corresponding test statistic is taken to be

Λ = −2 ln

[
L(reduced)

L(full)

]
(1.35)

where L denotes the likelihood function defined in (1.26). In the numerator, it is evaluated
for the reduced model (with all the β’s set to 0), and in the denominator it is evaluated using
the full set of estimated model coefficients. The resulting Λ follows a χ2 distribution with k
degrees of freedom. Thus, it can be used to compute a P -value, and to infer an appropriate
conclusion for our significance test.

Observe that equation (1.35) can also be written as

Λ = −2 ln[L(reduced)] + 2 ln[L(full)]

= Deviance(reduced)−Deviance(full)
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It follows that our test statistic is simply the difference between the deviances of the two
models. Intuitively, this makes sense because we expect a model with a good fit to have
much smaller deviance than an “intercept-only” model. Thus, Λ increases as the fit of the
model gets better, resulting in lower P -values, and higher probability of inferring significance
of the model as a whole.

Another common goal of inference procedures is to test the significance of individual predic-

tors. As usual, for the ith predictor we would hypothesize βi = 0, and then compute a test
statistic based on the corresponding bi estimated by our model. A common way of doing this
is by computing the Wald statistic, which is calculated in a very similar way to a z-score

w =
bi − 0

SE(bi)
(1.36)

The SE(bi) in the denominator is obtained from software, and the standard normal distribu-
tion is used for computing the P -value. This is known as the Wald test of significance for the
parameter βi. Regression summary output from R typically displays the Wald statistic and
P -value for each model parameter. Here is an excerpt from the email spam filter example
that shows this (z value refers to the Wald statistic)

In this example we observe that at a 5% significance level (α = 0.05), all three variables are
significant, according to the Wald test.

A closely related inference procedure is the Wald confidence interval. It provides an interval
estimate for the value of the parameter βi. The computational procedure is very similar to
that of confidence intervals based on the standard normal distribution

Wald CI = [bi ± z∗ × SE(bi)] (1.37)

Here bi is the fitted estimate for βi, z
∗ is the critical z-value for the chosen confidence level,

and SE(bi) is the standard error of the estimate (obtained from software). For example, a
95% Wald confidence interval for the variable free in the software output shown above is

Wald CIfree = [0.4269 ± 1.96× 0.1156] = [0.2003, 0.6535] (1.38)

Thus, assuming the conditions are met, we could infer with 95% confidence that the true
value of the slope coefficient of free lies between 0.2003 and 0.6535. Recall, this slope
coefficient models a linear relationship for the log odds of the predicted response. Therefore,
the confidence interval says that the log odds of an email being spam increases by a value
that lies between 0.2003 and 0.6535, for each 1 unit increase in the variable free. In practice,
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we often exponentiate these values to determine the effect on the odds ratio of the predicted
response

eCI = [e[0.2003, e0.6535] = [1.2218, 1.9222]

The interval suggests the odds ratio of an email being spam increases by a factor that lies
between 1.2218 and 1.9222, for each 1 unit increase in the variable free.
(I think this last statement is wrong. Fariba? Huong? What are your thoughts? Maybe it
is better to replace it with:
“The interval suggests the odds ratio of an email being spam lies between 1.2218 and 1.9222,
for each 1 unit increase in the variable free.”

What I am trying to suggest is that the odds ratio does not increase – but the odds do
increase.)

(Yet to complete:
* More examples showing how to do all the stuff described here.
* Homework exercises. )
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