MATH 120: Quiz 8-4/29/2022

A consumer advocacy group is interested in estimating the mean credit card debt per household in Indiana. They select a random sample of 64 households in Indiana and find the mean and standard deviation of credit card debt is $\$ 15,355$ and $\$ 10,000$, respectively.
Compute and interpret a 90% confidence interval to estimate the mean credit card debt per household in Indiana. (Make sure your solution includes all needed steps: check conditions, sampling distribution model, computations, and conclusion.)

Solution

In this problem, the sample statistics are: $\bar{x}=\$ 15,355$ and $s_{x}=\$ 10,000$.
The sample size is: $n=64$.
Checking the conditions for applying the Central Limit Theorem:
(i) Is the sample independent: For this, must check randomness, and whether $n<10 \%$ of the population.
Randomness: The question states that the sample of 64 households is random.
Is $n<10 \%$: Yes, 64 should be less than 10% of all households in Indiana.
(ii) Is the population approximately normally distributed?

No relevant information is provided. But, unless the population is severely skewed, a sample size of 64 is large enough to safely proceed.
All the conditions for applying inference procedures appear to be satisfied.
The sampling distribution follows the student- t model $t_{63}\left(\mu, \frac{10000}{\sqrt{64}}\right)$ dollars.
Margin of Error $=t_{63}^{*} \frac{s_{x}}{\sqrt{n}}=(1.671) \frac{10000}{\sqrt{64}}=\$ 2088.75$
(The value of t_{63}^{*} is taken from the t-table for 90% confidence with $d f=60$.)

Therefore, the confidence interval is: $\bar{x} \pm M E=15,355 \pm 2088.75$.
Answer: The 90% confidence interval $=[13266.25,17443.75]$.
Conclusion: With 90% confidence, the true mean credit card debt per household in Indiana is between $\$ 13,266$ and $\$ 17,444$.

Grading: Total points possible $=6$.
$1+0.5$ pt $=$ know + check correct 2 conditions.
$1.5 \mathrm{pt}=$ correct model details: $t, d f$, SE.
0.5 pt each for correct t^{*} and ME.
$1 \mathrm{pt}=$ compute correct confidence interval.
$1 \mathrm{pt}=$ state correct conclusion.

