MATH 120: Quiz 7-4/08/2022

A card game: You draw a card at random from a deck. If you get a red card, you win nothing. If you get a spade, you win $\$ 7$. For any club, you win $\$ 15$, plus an extra $\$ 25$ for the ace of clubs.
(a) Create a probability model for the amount you win.
(b) Find the expected amount you'll win.
(c) Find the standard deviation of the amount.
(Be sure to show steps/reasons.)

Solution

(a) Let $X=$ random variable that represents the amount I win.

The possible values of X are $\$ 40, \$ 15, \$ 7,0$.
The probability model is shown in the table below:

$X($ in $\$)$	40	15	7	0
$\mathrm{P}(X)$	$1 / 52$	$12 / 52$	$13 / 52$	$26 / 52$

Reason: $\mathrm{P}(40)=1 / 52$ because there is only one ace of clubs in 52 cards, and the prize for it is $\$ 40$. $\mathrm{P}(15)=12 / 52$ because there are 12 remaining clubs, for which the prize is $\$ 15$. $\mathrm{P}(7)=13 / 52$ because the prize for spades is $\$ 7$ and there are 13 spades out of $52 . \mathrm{P}(0)=26 / 52$ because there is no prize for red cards and there are 26 red cards.
(b) $E(X)=\sum x \cdot \mathrm{P}(x)=40 \cdot(1 / 52)+15 \cdot(12 / 52)+7 \cdot(13 / 52)+0 \cdot(26 / 52)$

$$
E(X)=\$ 5.98=\bar{x}
$$

(c) $S D(X)=\sqrt{\sum(x-\bar{x})^{2} \mathrm{P}(x)}$

$$
\begin{aligned}
& =\sqrt{\frac{(40-5.98)^{2}}{52}+\frac{(15-5.98)^{2} 12}{52}+\frac{(7-5.98)^{2} 13}{52}+\frac{(0-5.98)^{2} 26}{52}} \\
& =\sqrt{59.1727}=\$ 7.6924
\end{aligned}
$$

Answers: (b) The expected amount of winnings $=\$ 5.98$
(c) The standard deviation of winnings $=\$ 7.6924$

Grading: Total points possible $=6$.
2.5 points each for (a) and (b); 1 point for (c).

For (a): $1 \mathrm{pt}=$ correct values of $X ; 1.5 \mathrm{pt}=$ correct values of $\mathrm{P}(X)$.
For (b): $1 \mathrm{pt}=$ show correct plug into formula; $1.5 \mathrm{pt}=$ compute answer (with units).
For $(\mathrm{c}): 0.5+0.5 \mathrm{pt}=$ plug into correct formula + compute correct answer.

