MATH 120: Quiz 4-3/11/2022

A slot machine has 4 wheels that spin independently. Each has 10 equally likely symbols: 4 bars, 3 lemons, 2 cherries, and a bell. If you play, what is the probability you get:
(a) All lemons?
(b) No bars?
(c) At least one bell?

Be sure to show steps/reasons for every answer.

Solution

Since the wheels spin independently, we can treat the outcome of each as independent events.
For convenience, I'll denote the events as: $L=$ lemon, $B=\mathrm{bar}, B E=\mathrm{bell}$.
(a) All lemons: $P(L$ and L and L and $L)=P(L) \times P(L) \times P(L) \times P(L) \quad[\because$ independent $]$

$$
=(0.3)^{4}=0.0081 \quad[\text { because } P(L)=3 / 10=0.3]
$$

(b) No bars: $P(\sim B$ and $\sim B$ and $\sim B$ and $\sim B)$
$=P(\sim B) \times P(\sim B) \times P(\sim B) \times P(\sim B)=(0.6)^{4}=0.1296$
Note that we get $P(\sim B)=(10-4) / 10=0.6$.
(c) At least one bell: This can occur in many different ways, making it nearly impossible to compute it directly. So we use the complement.
Complement of "At least one bell" is "No bells."
$P($ No bells $)=P(\sim B E) \times P(\sim B E) \times P(\sim B E) \times P(\sim B E)=(0.9)^{4}$
Therefore, the probability of at least one bell $=1-(0.9)^{4}=0.3439$

Grading: Total points possible $=6$.
2 points each for (a), (b) and (c).
For (a) and (b): 1pt for correct answer; 1pt for reasonable steps.
For (c): $0.5 \mathrm{pt}=$ attempt a complement strategy, even if incorrectly.
$0.5+0.5 \mathrm{pt}=$ state the correct complement event + find its probability
$0.5 \mathrm{pt}=$ get answer by subtracting complement probability correctly.

