Probability basics

Objective

(1) Understand the concept of statistical probability.
(2) Learn how to compute probabilities for "simple" events.

Concept briefs:

* Trial, outcome, event - what is the difference?
* Probability = Relative frequency with which an event occurs. If all outcomes are equally likely, probability is simply the proportion of favorable outcomes.
* Disjoint events $=$ They have no outcomes in common.
* Independent events = One's outcome has no effect on other's outcome.
* Complement rule: $P(A)=1-P(n o t A)$.
* For disjoint events: $P(A$ or $B)=P(A)+P(B)$.
* For independent events: $P(A$ and $B)=P(A) * P(B)$.

Warmup questions:

* If I toss a coin once, what is the probability I will get heads.
* If I toss a coin twice, what is the probability of both heads?
* If I toss a coin 3 times, what is the probability all 3 heads?

Cheating dice again:

* Suppose I custom-make a "die" that has 6's on three sides, and the remaining three sides have $3,4 \& 5$. If I roll this "die" and look at the number I get:
- What is the probability of NOT getting a 6 ?
- What is the probability of getting an even number?

Coin Toss Outcomes:

	1 Toss	2 Tosses	3 Tosses
g	H	H H	H HH
E	T	HT	H $\mathrm{H}^{\text {T }}$
O	Total $=2$	TH	HTH
0		TT	HTT
\bigcirc		Total $=4$	THH
\%			THT
\%			TTH
¢			TTT Total=8

Die roll outcomes: $3,4,5,6,6,6$

Moral of the story: Make a list of all possible outcomes. Look at what proportion of these gives the desired outcomes, to get the probability.

Trial, outcome, event - How are they different?

Illustration: Toss a coin 2 times

Trial: Each sequence of 2 tosses.
Outcome: There are 4 possible outcomes $\{H, H\},\{T, H\},\{H, T\},\{T, T\}$

Sample space: Collection of all possible outcomes.
Event: Can define any individual outcome, or group of outcomes as an event.
E.g., Event $A=$ Both heads $-->\{H, H\}$ is only acceptable outcome.

Event $B=$ At least 1 head $-->\{H, H\},\{T, H\},\{H, T\}$ are acceptable.

Illustration 2: Roll 2 dice

Trial: Each roll of the 2 dice.
Outcome: There are 36 possible outcomes [Exercise: Name them.] e.g., $\{1,1\},\{1,2\},\{1,3\}, \ldots,\{2,1\},\{2,2\}$, etc.

Sample space: Collection of all 36 outcomes.
Event: Can define any individual outcome, or group of outcomes as an event.
E.g., Event $\mathrm{A}=$ The sum is $2 \cdots\{1,1\}$ is only acceptable outcome.

Event $B=$ Both dice come up even ---> Several acceptable outcomes. Can you name them?
Event $\mathrm{C}=$ The average is 6 [this is the same as "sum is 12." Why?]

A fundamental probability concept

If all outcomes are equally likely, then:

Warmup Exercises

(I) For 2 coin tosses, find the probability of each of the following events:
$A=$ at least 1 head
$B=$ first heads, then tails
$C=\operatorname{not} B$
(II) For 3 coin tosses, find each of the following probabilities:
$A=$ at least 1 head
$B=$ at least 2 heads
$C=\operatorname{not} B$
$D=C$ and A

Key definitions \& background concepts

Probability: For events with random individual outcomes, probability is the long-term relative frequency of a specific outcome.

Disjoint events: Two (or more) events are disjoint if they are mutually exclusive, i.e., they have no outcomes in common.
E.g., Toss a coin twice: $A=$ both heads, $B=$ at least 1 tail.

Independent events: Two (or more) events are independent if the outcome of one has no effect on the outcome of the other.
E.g., Toss a coin twice: $A=$ first toss gives heads, $B=2 n d$ toss gives tails.
--> It follows that if two events are disjoint, they cannot be independent!
[Q: Explain why, with example]

Five basic rules

(1) Probability is always between 0 and 1.
Q : What does $\mathrm{P}=0$ or $\mathrm{P}=1$ mean?
Q2: Give examples of $P=0$ and $P=1$ events.
(2) Collective probability of all possible outcomes is always 1.
E.g.: P (heads) $+P$ (tails) $=1$ for a coin toss
E.g.: $P($ hearts $)+P($ diamonds $)+P($ spades $)+P($ clubs $)=1$ in a deck of 52 cards.
(3) Probability of $A=1$ - probability of NOT-A.
E.g.: P (hearts) $=1$ - probability of not getting hearts, in deck of 52 cards.
(4) Simple Addition Rule: For disjoint events, the probability that one or the other occurs is the sum of the individual probabilities.
E.g.: Probability of getting hearts OR spades $=P($ hearts $)+P($ spades $)$
(5) Simple Multiplication Rule: For independent events, the probability that both will occur is the product of the individual probabilities.
E.g.: If I pull one card each from 2 decks of 52 cards, the probability of getting 1 heart and 1 spade $=P$ (hearts) * P (spades)

Conditional probability \& more

Objective

(1) Learn how to work with conditional probabilities.
(2) Learn graphical techniques used in computing probabilities.
(3) Understand how "drawing without replacement" affects probability.

Concept briefs:

* Conditional probability background: For 2 non-independent events A and B, if one has already occurred, what's the probability other also occurred? e.g., If you know A has occurred, then $P(B)$ should go up (or down).
* Conditional probability concept: Frequency of an event (say, B) relative to another event (say, A) \Rightarrow proportion of common outcomes of B within A.
* Conditional probability techniques: (1) Two-way tables, (2) Venn diagrams, (3) Tree diagrams.
* General addition rule: $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
* General multiplication rule: $P(A$ and $B)=P(A) \times P(B \mid A)=P(B) \times P(A \mid B)$
* Independent events - Technical method: If $P(B \mid A)=P(B)$, then A and B are independent.
* Drawing w/o replacement: Some probabilities are affected by sample size. E.g., What is probability of drawing 4 back-to-back hearts from 52 cards? Would this change if we put the card back into the deck after each draw?

Conditional probability with Venn diagrams

Illustration: Roll a die once, look at outcome.
Event $\mathbf{A}=$ Even number $\Rightarrow\{2,4,6\}$
Event $B=$ Number larger than $3 \Rightarrow\{4,5,6\}$
Event $\mathbf{C}=$ The number $1 \Rightarrow\{1\}$

NOTICE that A and B aren't disjoint but C is disjoint from both.

Q: What is $P(B I A)$? [i.e., probability of B, given A]
\Rightarrow Look for relative frequency of B within A.
$=\frac{\# \text { of outcomes of B within A }}{\# \text { of outcomes in A }}=\frac{2}{3}$

Q2: What is $P(A I B)$? [i.e., probability of A, given B]
Here it is $2 / 3$ also.
BUT, be aware it is not always the same as $\mathrm{P}(\mathrm{BIA})$.

Q3: What is $\mathrm{P}(\mathrm{CIA})$?!

General addition rule

Recall: Simple addition rule, $P(A$ or $B)=P(A)+P(B)$, requires disjoint events.

General rule for any 2 events is:

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

See previous Venn diagram: Key idea here is to subtract out the double count of $P(A$ and $B)$ that happens if we simply do $P(A)+P(B)$.

General multiplication rule

Recall: Simple multiplication rule, $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$, requires independent events.

General rule for any 2 events is:

$$
P(A \text { and } B)=P(A) \times P(B I A) \text { OR } P(A \text { and } B)=P(B) \times P(A I B)
$$

NOTES:

* This rule is used in different ways.
* As written, it gives us a way to compute $\mathrm{P}(\mathrm{A}$ and B$)$.
*But, often used to find conditional probabilities by rewriting as

$$
P(B \mid A)=\frac{P(A \text { and } B)}{P(A)} \quad \text { OR } \quad P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}
$$

Independence - Technical definition

To prove independence of A and B, you must compute \& show that

$$
P(B \mid A)=P(B) \quad O R \quad P(A \mid B)=P(A)
$$

In words:
"The probability of B remains unchanged even if A has occurred." OR
"The probability of A remains unchanged even if B has occurred."

Common errors to watch for

(1) Misinterpreting conditional probability wording to mean "and" probability.
E.g., (a) Find the probability that a natural sciences student is also a smoker.
(b) Find the probability that a student is in the natural sciences and smokes.
[Can you tell which is which kind of probability?]
(2) Misinterpreting "or" probabilities as mutually exclusive.
E.g., What is the probability that a student is a sophomore or lives off campus. [This should include sophomores, off campus residents, as well as those who are both.]
(3) When using Venn diagrams to compute conditional probability, students sometimes forget to include the intersection region in the calculations.
E.g., Suppose you're given: P (sophomore) $=0.28, \mathrm{P}$ (off-campus) $=0.16$, P (sophomore and off-campus) $=0.06$.

Then, it follows that: P (sophomore I off-campus) $=0.06 /(0.06+0.10)$
P (sophomore OR off-campus) $=0.22+0.06+0.10$
(4) Forgetting to draw without replacement when sample size is small.
E.g., In a class of 20 students, suppose there are 6 liberals (30%), 10 moderates (50\%), and 4 conservatives (20%). The probability of randomly picking 3 conservatives back-to-back is not . $2 x .2 x$.2. It is $.2 x(3 / 19) \times(2 / 18)$.
(5) Forgetting to verify "independent" or "disjoint" before using simple multiplication or addition rule.
E.g., Suppose $P(C)=0.4, P(D)=0.7, P(C I D)=0.6$.

Then $\mathrm{P}(\mathrm{C}$ and D$)$ is NOT $0.4 x 0.7$. $\mathrm{P}(\mathrm{C}$ or D$)$ is NOT $0.4+0.7$.

