General pointers on normal table lookups

The table is used in 2 different ways, depending on the problem you want to solve:
(1) Given a z-score, lookup what proportion of the distribution is to the left.
(2) Given a proportion of the distribution (measured from the left), lookup the z-score where it occurs.

It helps to keep the following in mind:

* The table expresses all proportions as fractions (not \%).
* The total proportion of everything under the normal curve is 1.0 (i.e., 100\%).
* Proportion to the right of a z -score $=1.0$ - proportion to the left.
* The normal curve is perfectly symmetric, and centered at 0 . You can exploit this knowledge \& take many short-cuts. E.g., Proportion to the right of $\mathrm{z}=1.2$ is same as proportion to the left of $\mathrm{z}=-1.2$.
* Another helpful use of symmetry: If a z-score is negative, the proportion must be below 0.5 . If a zscore is positive, the proportion must be larger than 0.5 .

Basic table layout:

* This table accepts z-scores with 2 decimals, and expresses proportions using 4 decimals.
* The bulk of the "interior" of the table consists of 4-digit values that are proportions.
* The vertical column at the ends of the table shows z-scores upto the first decimal place. The top row of the table shows the 2nd decimal place.

Example:

* Find the \% of the normal distribution that is below $\mathrm{z}=1.26$.
* Method: First, find the row with $\mathrm{z}=1.2$. Then move horizontally to the column that reads 0.06 in the top row. The 4-digit number in that position is 0.8962 . Answer: 89.62% of the normal distribution lies below $\mathrm{z}=1.26$.

Example:

* Find the z -score where 34% of the normal distribution is to the left.
* Method: Start in the interior of the table and look for the 4 -digit number closest to 0.34 . Once you find this, read the z-score at that position. Answer: The closest value to 0.34 is 0.3409 , so the required z-score is -0.41 .

