Homework due April 8

Assigned exercises:
From linked supplement: $7,8,17,20,25,28,33,40(a-d)$.
From Ch.6, OpenStax: ex. $63,68,74,75,79,80,88$. (total $=15$ exercise numbers)
Graded exercises:
From linked supplement: 8, 33, 40.
From Ch.6, OpenStax book: 75, 88.
Total (maximum) possible points $=20$.
3 pt for each of 5 graded problems, plus 5 for completion of the rest.
-0.5 pt for each (ungraded) missing problem; if a graded problem is missing, student loses the points allotted to it.

Exercises from linked supplement

(8) Given: Soccer team scores on 8% of their corner kicks.

The next 15 kicks can be considered a binomial experiment if we assume the kicks are independent and have the same probability of scoring. Under those assumptions, the model is: $B(15,0.08)$.
Probability of scoring on exactly 2 out those 15 kicks $={ }_{15} C_{2}(0.08)^{2}(0.92)^{13}$

$$
=0.227
$$

Grade:

$2 \mathrm{pt}=$ write/show the probability as ${ }_{15} C_{2}(0.08)^{2}(0.92)^{13}$
$1 \mathrm{pt}=$ show even some minimal step or reason.
(33) Let $X=$ random variable that represents Mary's gain (in $\$$).
(a) The probability that $X=\$ 100$ is 0.8 .

And the probability that $X=-\$ 150$ is 0.2 .
Thus, the expected value is: $\sum x \cdot P(x)=(100)(0.8)-(150)(0.2)=\$ 50$
(b) The standard deviation is: $\sqrt{\sum(x-\bar{x})^{2} \mathrm{P}(x)}$, with $\bar{x}=\$ 50$.

$$
\begin{aligned}
= & \sqrt{(100-50)^{2} \cdot(0.8)+(-150-50)^{2} \cdot(0.2)} \\
& =\$ 100 \text { (Answer) }
\end{aligned}
$$

Grade: 1.5 pt. each for (a) and (b).
For each: $1 \mathrm{pt}=$ show correct calculation $\operatorname{step}(\mathrm{s}) ; 0.5 \mathrm{pt}=$ get correct answer.
(40) (a) Not graded, but here are the answers: Mean $=60, \mathrm{SD}=12$.
(b) Mean: $E(0.5 Y)=0.5 \cdot E(Y)=(0.5)(12)=6$ (Answer)
$S D(0.5 Y)=0.5 \cdot S D(Y)=(0.5)(3)=1.5$ (Answer)
(c) Mean: $E(X+Y)=E(X)+E(Y)=10+20=30$ (Answer)

$$
\begin{aligned}
S D(X+Y)= & \sqrt{\operatorname{VAR}(X+Y)}=\sqrt{\operatorname{VAR}(X)+\operatorname{VAR}(Y)}=\sqrt{12^{2}+3^{2}} \\
& \approx 12.37 \text { (Answer) }
\end{aligned}
$$

(d) Not graded, but here are the answers:
$E(X-Y)=68, \quad S D(X-Y)=S D(X+Y) \approx 12.37$
Grade: 1.5 pt each for (b) and (c). (a) and (d) are not graded.
For each: 0.5 pt for correct mean +0.5 pt for correct $\mathrm{SD}+0.5 \mathrm{pt}$ show some step (s).

Exercises from Ch.6, OpenStax

(75) (a) Since X is normally distributed with mean $=36$ and $\mathrm{SD}=10: \quad X \sim N(36,10)$
(b) To find the probability that $X>40$:

$$
z=\frac{40-36}{10}=0.4
$$

From z-table, $P(z>0.4)=0.3446$
Answer: The probability that a person consumes more than 40% fat $=0.3446$.

(c) The maximum of the lower quarter occurs when there is 25% in the left tail.

From the z-table, this occurs at $z=-0.67$.
The corresponding value of fat $\%=-0.67 \times 10+36=29.3 \%$ (Answer)
Grade: (a) is not graded. 1.5pt each for (b) and (c).
For (b): $0.5 \mathrm{pt}=$ compute z-score, or show exactly how table lookup was done.
$1 \mathrm{pt}=$ get correct answer.
For (c): $0.5 \mathrm{pt}=$ find z-score corresponding to 25% in the left tail.
$1 \mathrm{pt}=$ get correct answer.
-0.5 point if no sketch is shown. Both (b), (c) asked for sketches. At least one is required for full credit.
(88) Given: On average, 28% of 18 to 34 y.o. Facebook users check their profile in the morning. The SD is 5% and the distribution is normal.
(a) Let $X=$ percent of 18 to 34 y.o. users who check their profile in the mornings.

We have $X \sim N(28,5)$. The z-score for $X=30$ is: $z=\frac{30-28}{5}=0.4$.
To find $P(X \geq 30)$, lookup $P(z \geq 0.4)$. From z-table, $P(z \geq 0.4)=0.3446$
(b) From z-table, the 95 th percentile occurs at $z=1.64$.

The corresponding $\%$ score $=1.64 \times 5+28=36.2 \%$ (Answer)

Grade: 1.5 pt each for (a) and (b).
For (a): $0.5 \mathrm{pt}=$ compute z-score, or show exactly how table lookup was done.
$1 \mathrm{pt}=$ get correct answer.
For (b): 0.5 pt $=$ find z-score corresponding to 95% in the left tail.
$1 \mathrm{pt}=$ get correct answer.

