Homework due April 1

Assigned exercises:
From linked supplement: 42, 47, 49, 55, 57.
From Ch.4, OpenStax book, pg. 284-292, ex. 28, 31, 32, 35, 71, 73, 74(b,c,d,e),
$81,83,84,85$. (total $=15$ exercise numbers)
Graded exercises:
From linked supplement: 47, 49.
From Ch.4, OpenStax book: 32, 35, 73.
Total (maximum) possible points $=20$.
3 pt for each of 5 graded problems, plus 5 for completion of the rest.
-0.5 pt for each (ungraded) missing problem; if a graded problem is missing, student loses the points allotted to it.

Exercises from linked supplement

(47) One way to organize the given information is via a tree diagram:

(a) No, they are not independent. Independence would require:
$\mathrm{P}($ Luggage $)=\mathrm{P}($ Luggage \mid On time $)=\mathrm{P}($ Luggage \mid Not on time $)$
Here $\mathrm{P}($ Luggage \mid On time $)=0.95$, whereas $\mathrm{P}($ Luggage \mid Not on time $)=0.65$.
(b) $\mathrm{P}($ Luggage $)=\mathrm{P}($ On time and Luggage $)+\mathrm{P}($ Not on time and Luggage $)$

From the tree, we get: $\mathrm{P}($ Luggage $)=(0.15)(0.95)+(0.85)(0.65)$

$$
=0.695 \text { (Answer) }
$$

Grade: 1 pt. for (a), 2 pt . for (b).
For (a): answer must include argument comparing conditional probabilities of luggage for on time vs not on time.
For (b): $1 \mathrm{pt}=$ correct tree diagram (need not include every detail in mine).
$1 \mathrm{pt}=$ correct computations .
If student doesn't use a tree diagram, solution must show clear steps on how P (Luggage) was computed.
(49) This question is asking for the conditional probability: P (Not on time | No luggage) Using the conditional probability formula, together with the tree diagram shown above:
$\mathrm{P}($ Not on time \mid No luggage $)=\frac{\mathrm{P}(\text { Not on time and No luggage })}{\mathrm{P}(\text { No luggage })}=\frac{(0.85)(0.35)}{1-0.695}$

$$
=0.9754 \text { (Answer) }
$$

Grade:

$1 \mathrm{pt}=$ know/show/understand that this Q is about P (Not on time | No luggage)
$1 \mathrm{pt}=$ know/show correct conditional probability formula needed here.
$1 \mathrm{pt}=$ compute correct answer.

Exercises from Ch.4, OpenStax

(32) This is asking for the expected value:

$$
\begin{gathered}
E(X)=\sum x \cdot P(x)=(1)(0.1)+(2)(0.05)+(3)(0.1)+(4)(0.15)+(5)(0.3)+(6)(0.2)+(7)(0.1) \\
\text { Answer: } E(X)=4.5 \text { years }
\end{gathered}
$$

Grade:

$2 \mathrm{pt}=$ show correct numbers plugged into $E(X)$ formula.
$1 \mathrm{pt}=$ compute correct answer.
(35) Given info: If I draw a face card from a standard deck of 52 playing cards, I win $\$ 30$. Otherwise, I pay $\$ 2$.

Let $X=$ the amount I win (a negative amount corresponds to loss).
Since there are 12 face cards out of 52 , the values of X and their probability is:

$X($ in $\$)$	30	-2
$P(x)$	$12 / 52$	$40 / 52$

Therefore, $E(X)=\sum x \cdot P(x)=30\left(\frac{12}{52}\right)-2\left(\frac{40}{52}\right) \quad=\$ 5.38$

Grade:

$1+1 \mathrm{pt}=$ show correct values of $X+$ corresponding values of $P(X)$.
$1 \mathrm{pt}=$ compute correct answer.
(73) (a) Since all the probabilities sum up to 1 , the missing probability is:

$$
1-(0.3+0.2+0.4)=0.1 \text { (Answer) }
$$

(b) $E(X)=\sum x \cdot P(x)=0(0.3)+1(0.2)+2(0.1)+3(0.4) \quad=1.6$ (Answer)

Grade: 1.5 pt. each for (a) and (b).
For each case: $1 \mathrm{pt}=$ correct answer; $0.5 \mathrm{pt}=$ show some step(s) or reason(s)

