Theorem 3.5: Let A be a set, and let S be a partition of A. There is an equivalence relation \sim on A such that $S = A / \sim$.

Solution: I will use a direct proof.

{* State my hypotheses}

- (1) Let A be a set, and let S be a partition of A.
- {* Outline my strategy}
- (2) I will define a relation \sim on A, and then show
 - (i) \sim is an equivalence relation on A, and
 - (ii) $S = A / \sim$
- $\{* Define \sim\}$
- (3) Let \sim be a relation on A such that for all $x, y \in A$:
- $x \sim y$ iff there exists $P \in S$ such that $x, y \in P$.
- {* Show it is an equivalence relation}
- (4) I'll now show that \sim is an equivalence relation on A.
 - (4.1) Consider any $x \in A$. Since S is a partition of $A, x \in P$ for some $P \in S$ [by definition of partition] This means $x \sim x$, since $x, x \in P$ [by definition of \sim in line (3)] It follows that \sim is reflexive.

```
(4.2)
```

(Student proves it is symmetric and transitive).

- (5) Lines (4.1)-(4.3) show that \sim is an equivalence relation on A.
- $\{ * Next, show S = A / \sim \}$

(6) Instead of proving $S = A/\sim$, I'll show that each equivalence class of A under \sim coincides with some set in the partition S.

[My instructor agreed to accept that as a substitute for proving $\mathcal{S} = A/\sim$]

- (7) Accordingly, let $x \in A$, and let E_x denote the equivalence class of x under \sim .
- (8) Since $x \in A$, there is some $T \in S$ such that $x \in T$, because _____
- (9) I will prove that $E_x = T$ by establishing a subset relation in both directions.
 - (9.1) Proof of $E_x \subseteq T$.

(9.1.1) Let $m \in E_x$. I must show that $m \in T$.

(Student completes the argument).

(9.2) Proof of $T \subseteq E_x$. (6.2.1) Let $n \in T$. I must show that $n \in E_x$.

(Student completes the argument).

- (9.3) The results from (9.1) and (9.2) together prove that $E_x = T$.
- (9.4) Therefore, we have shown there exists an equivalence relation \sim on A induced by the partition S. Furthermore, every equivalence class of A coincides with some piece of the partition. This completes the proof.