Quiz: September 13

This is a closed-book quiz, and no team-work or reference materials are permitted.

1. Give a mathematically precise definition of image and pre-image (in connection with functions). Be sure to include any context needed for your definition to make sense.
Example of needed context: If you are trying to define "relation," be sure to indicate the sets that your relation will try to relate. Example of a complete definition of relation: "A relation from set A to set B is any subest of $A \times B$, where $A \times B=$ $\{(m, n) \mid m \in A$ and $n \in B\} "$
2. Let $g: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function defined by

$$
g(x)= \begin{cases}x+10 & \text { if } x \text { is odd } \\ x-11 & \text { if } x \text { is even }\end{cases}
$$

Let $S=\{x \in \mathbb{N} \mid 2 \leq x<8\}$. Find $g^{-1}(S)$ and $g\left(g^{-1}(S)\right)$.

Solution

1. Let A and B be sets and $f: A \rightarrow B$ be a function.

The image of any $C \subseteq A$ is defined by

$$
f(C)=\{y \in B \mid y=f(x) \text { for some } x \in C\}
$$

OR

$$
f(C)=\{y \in B \mid \text { there exists } x \in C \text { for which } y=f(x)\}
$$

The pre-image of any $D \subseteq B$ is defined by

$$
f^{-1}(D)=\{x \in A \mid f(x) \in D\}
$$

2. We have $S=\{2,3,4,5,6,7\}$.

To find $g^{-1}(S)$: We notice that the range of $g(x)$ only contains odd numbers. Thus the even numbers in S have no inverse image. That means we only need to consider the odd numbers in S.
For example, if $g(x)=3$ then $x=-7$ and $x=14$ are both valid since $g(-7)=g(14)=3$.
In this way, we get: $g^{-1}(S)=\{-7,14,-5,16,-3,18\}=\{-7,-5,-3,14,16,18\}$
For $g\left(g^{-1}(S)\right)$, we must find $g(\{-7,14,-5,16,-3,18\})$.
Plugging these elements into $g(x)$ gives: $g(-7)=g(14)=3$, etc.
Therefore, $g\left(g^{-1}(S)\right)=\{3,5,7\}$

Grading: Total points possible $=5$.
2.5 pt for (1): $0.5 \mathrm{pt}=$ clarify sets $A, B, f: A \rightarrow B ; 1+1 \mathrm{pt}=$ each correct defn.
2.5 pt for (2): 1 pt for each correct answer; 0.5 pt for steps/reasons.

