Quiz: August 23

This is a closed-book quiz, and no team-work or reference materials are permitted.
(1) Write a negation of the following: For all $x, y \in \mathbb{R}$, if $x y=0$ then $x=0$ or $y=0$.
(2) Give a mathematically precise definition for each of the following set theoretic terms. In each case, be sure to include any needed context for your definition to make sense. [Example of needed context: If you are trying to define "subset," be sure to indicate the sets that your definition will apply to. Example of a complete definition of subset: Set A is a subset of set B if $x \in A \Rightarrow x \in B]$
(a) Intersection.
(b) Relative complement.

Solution

(1) There exist $x, y \in \mathbb{R}$ such that $x y=0$, and neither $x=0$ nor $y=0$.

OR
There exist $x, y \in \mathbb{R}$ such that $x y=0$ and $x \neq 0$ and $y \neq 0$.
(2) Let A and B be sets.
(a) The intersection of A and B is the set

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

(b) The relative complement of B in A is the set

$$
A-B=\{x \mid x \in A \text { and } x \notin B\}
$$

Grading: Total points possible $=5$.
0.5 pt for any reasonable effort.
1.5 pt for (1): -0.5 point for each error (but minumum grade $\in \mathbb{R}^{+} \cup\{0\}$).

3 pt for (2): 1.5 point for each of (a) and (b).

