Quiz: August 16

This is a closed-book quiz, and no team-work or reference materials are permitted.
(1) Write a negation of the following:

Some basketball players at Earlham College are short.

(2) Write a negation of each of the following in words and in symbols:
a. There exists a natural number n such that $3 n$ is divisible by 6 .
b. If p is an integer, then so is $p / 2$.

Solution

(1) All basketball players at Earlham College are tall.

In symbols (if you insist!): $(\forall x \in E C B)(x \in T)$
where $E C B$ is the set of all basketball players at EC, and T is the set of all tall people.
Remark: Here we're assuming "tall" has the same meaning as "not short." Clearly, this is not always true in everyday, spoken English. For example, if I say "She is not a short lady," you won't necessarily conclude she is tall.
(2) a. Words: For every natural number $n, 3 n$ is NOT divisible by 6 .

OR

There is no natural number n such that $3 n$ is divisible by 6 .
Symbols: $(\forall n \in \mathbb{N})\left(\frac{3 n}{6} \notin \mathbb{N}\right)$
b. Words: There exists an integer p such that $p / 2$ is not an integer.

Remark: While it is okay if your answer says: " p is an integer and $p / 2$ is not an integer," the above answer is clearer and more precise.
Symbols: $(\exists p \in \mathbb{Z})(p / 2 \notin \mathbb{Z}) \quad$ OR $\quad(p \in \mathbb{Z})(p / 2 \notin \mathbb{Z})$

Grading: Total points possible $=5$.
1 pt for any reasonable effort.
1 pt for (1): No partial credit - either it is correct, or it is not!
3 pt for (2): 1.5pt for each of (a) and (b).
$1 \mathrm{pt}+0 . .5 \mathrm{pt}=$ correct words + correct symbols
(or other way round, if that yields higher score).

