Assigned exercises: 3.1: 3, 4, 6, 7, 10.

3.2: 1, 2 (questions 2, 4, 5, 8, 9 in Examples 3.6).

3.3: 2, 4. (10 problems - depending on what/how I count)

Graded exercises: 3.1: 3. 3.2: 1, 2 (numbers 2, 8). 3.3: 4.

Total (maximum) possible points = 20.

4 pt for each of 4 graded problems, plus 4 for completion of the rest.

Exercise 3.1

(3) Prove: $A \times B = \emptyset$ iff $A = \emptyset$ or $B = \emptyset$.

Solution:

(a) By considering its contrapositives, this 2-way implication can be written in the following equivalent form:

 $A \times B \neq \emptyset$ iff $A \neq \emptyset$ and $B \neq \emptyset$

- (b) Direct proof of $A \times B \neq \emptyset \Rightarrow A \neq \emptyset$ and $B \neq \emptyset$
 - i. Let A and B be sets such that $A \times B \neq \emptyset$.
 - ii. Then there exists some $(p,q) \in A \times B$. [since $A \times B$ is not empty]
 - iii. That means $p \in A$ and $q \in B$. [by defn. of cross product]
 - iv. This implies $A \neq \emptyset$ and $B \neq \emptyset$.
 - v. From lines i. and iv. it follows that $A \times B \neq \emptyset \Rightarrow A \neq \emptyset$ and $B \neq \emptyset$
- (c) Direct proof of converse: $A \neq \emptyset$ and $B \neq \emptyset \Rightarrow A \times B \neq \emptyset$
 - i. Let A and B be sets such that $A \neq \emptyset$ and $B \neq \emptyset$.
 - ii. Then there exists some $m \in A$ and some $n \in B$.
 - iii. This implies $(m, n) \in A \times B$. [by defined of cross product]
 - iv. Therefore, $A \times B \neq \emptyset$.
 - v. From lines i. and iv. we have: $A \neq \emptyset$ and $B \neq \emptyset \Rightarrow A \times B \neq \emptyset$
- (d) From (b) and (c) it follows that $A \times B \neq \emptyset$ iff $A \neq \emptyset$ and $B \neq \emptyset$.
- (e) By contraposition, this implies: $A \times B = \emptyset$ iff $A = \emptyset$ or $B = \emptyset$.

Exercise 3.2

The following solutions are for both questions in Exercise 3.2. The question numbers refer to those in Examples 3.6 in the textbook.

(2) $r = \{(x, y) \in \mathbb{R}^2 \mid x < y\}$

Solution:

Some elements in $r: (0,3), (-\pi,\pi), (-9,-3), (0.37, 8.43), (\sqrt{2}, \sqrt{3}).$

Dom $\boldsymbol{r} = \mathbb{R}$.

Reason: \boldsymbol{r} is a relation on \mathbb{R} , and for every $x \in \mathbb{R}$ there exists y such that x < y. Im $\boldsymbol{r} = \mathbb{R}$.

Reason: For every $y \in \mathbb{R}$, x < y for some $x \in \mathbb{R}$.

(8) \boldsymbol{r} on \mathbb{N} such that $a\boldsymbol{r}b$ if and only if $a \mid b$.

Solution:

Some elements in \boldsymbol{r} : (2, 26), (6, 12), (3, 12), (15, 45), (475, 950). Dom $\boldsymbol{r} = \mathbb{N}$. Reason: \boldsymbol{r} is a relation on \mathbb{N} , and every $a \in \mathbb{N}$ is the divisor of some $b \in \mathbb{N}$. (E.g., pick b = 2a). Im $\boldsymbol{r} = \mathbb{N}$. Reason: For every $b \in \mathbb{N}$ we can pick a = 1, which would satisfy the definition of "a divides b" given on pg. 43 of the textbook.

Exercise 3.3

(4) Determine whether the following \boldsymbol{r} is reflexive, symmetric, transitive:

 \boldsymbol{r} on \mathbb{Z} such that $a\boldsymbol{r}b$ if and only if $a \neq b$

Solution:

Check reflexive:

For a r a to hold, it requires $a \neq a$. Since this is impossible, r is not reflexive.

Check symmetric:

Let $m, n \in \mathbb{Z}$ such that $m \mathbf{r} n$. Since $m \neq n$ implies $n \neq m$, it follows that \mathbf{r} is symmetric.

Check transitive:

Let $m, n, p \in \mathbb{Z}$ such that $m \mathbf{r} n$ and $n \mathbf{r} p$.

This implies $m \neq n$ and $n \neq p$. BUT... can we conclude $m \neq p$?

NO. Here is a counterexample: let a = 5, b = 2, c = 5.

Then $a \neq b$ and $b \neq c$, but a = c. It follows that r is NOT transitive.

Answers: The given r is symmetric. But it is not reflexive and not transitive.