Homework due date Sep. 6

Assigned exercises: 3.1: 3, 4, 6, 7, 10.
3.2: 1, 2 (questions 2, 4, 5, 8, 9 in Examples 3.6).
3.3: 2, 4. (10 problems - depending on what/how I count)

Graded exercises: 3.1: 3. 3.2: 1, 2 (numbers 2, 8). 3.3: 4.
Total (maximum) possible points $=20$.
4 pt for each of 4 graded problems, plus 4 for completion of the rest.

Exercise 3.1

(3) Prove: $A \times B=\emptyset$ iff $A=\emptyset$ or $B=\emptyset$.

Solution:

(a) By considering its contrapositives, this 2-way implication can be written in the following equivalent form:

$$
A \times B \neq \emptyset \text { iff } A \neq \emptyset \text { and } B \neq \emptyset
$$

(b) Direct proof of $A \times B \neq \emptyset \Rightarrow A \neq \emptyset$ and $B \neq \emptyset$
i. Let A and B be sets such that $A \times B \neq \emptyset$.
ii. Then there exists some $(p, q) \in A \times B$. [since $A \times B$ is not empty]
iii. That means $p \in A$ and $q \in B$. [by defn. of cross product]
iv. This implies $A \neq \emptyset$ and $B \neq \emptyset$.
v. From lines i. and iv. it follows that $A \times B \neq \emptyset \Rightarrow A \neq \emptyset$ and $B \neq \emptyset$
(c) Direct proof of converse: $A \neq \emptyset$ and $B \neq \emptyset \Rightarrow A \times B \neq \emptyset$
i. Let A and B be sets such that $A \neq \emptyset$ and $B \neq \emptyset$.
ii. Then there exists some $m \in A$ and some $n \in B$.
iii. This implies $(m, n) \in A \times B$. [by defn of cross product]
iv. Therefore, $A \times B \neq \emptyset$.
v. From lines i. and iv. we have: $A \neq \emptyset$ and $B \neq \emptyset \Rightarrow A \times B \neq \emptyset$
(d) From (b) and (c) it follows that $A \times B \neq \emptyset$ iff $A \neq \emptyset$ and $B \neq \emptyset$.
(e) By contraposition, this implies: $A \times B=\emptyset$ iff $A=\emptyset$ or $B=\emptyset$.

Exercise 3.2

The following solutions are for both questions in Exercise 3.2. The question numbers refer to those in Examples 3.6 in the textbook.
(2) $\boldsymbol{r}=\left\{(x, y) \in \mathbb{R}^{2} \mid x<y\right\}$

Solution:

Some elements in $\boldsymbol{r}:(0,3),(-\pi, \pi),(-9,-3),(0.37,8.43),(\sqrt{2}, \sqrt{3})$.
Dom $\boldsymbol{r}=\mathbb{R}$.
Reason: \boldsymbol{r} is a relation on \mathbb{R}, and for every $x \in \mathbb{R}$ there exists y such that $x<y$. $\operatorname{Im} \boldsymbol{r}=\mathbb{R}$.
Reason: For every $y \in \mathbb{R}, x<y$ for some $x \in \mathbb{R}$.
(8) \boldsymbol{r} on \mathbb{N} such that $a \boldsymbol{r} b$ if and only if $a \mid b$.

Solution:

Some elements in $\boldsymbol{r}:(2,26),(6,12),(3,12),(15,45),(475,950)$.
Dom $\boldsymbol{r}=\mathbb{N}$.
Reason: \boldsymbol{r} is a relation on \mathbb{N}, and every $a \in \mathbb{N}$ is the divisor of some $b \in \mathbb{N}$. (E.g., pick $b=2 a$).
$\operatorname{Im} \boldsymbol{r}=\mathbb{N}$.
Reason: For every $b \in \mathbb{N}$ we can pick $a=1$, which would satisfy the definition of "a divides b" given on pg. 43 of the textbook.

Exercise 3.3

(4) Determine whether the following \boldsymbol{r} is reflexive, symmetric, transitive:
\boldsymbol{r} on \mathbb{Z} such that $a \boldsymbol{r} b$ if and only if $a \neq b$

Solution:

Check reflexive:

For $a \boldsymbol{r} a$ to hold, it requires $a \neq a$. Since this is impossible, \boldsymbol{r} is not reflexive.

Check symmetric:

Let $m, n \in \mathbb{Z}$ such that $m \boldsymbol{r} n$.
Since $m \neq n$ implies $n \neq m$, it follows that \boldsymbol{r} is symmetric.

Check transitive:

Let $m, n, p \in \mathbb{Z}$ such that $m \boldsymbol{r} n$ and $n \boldsymbol{r} p$.
This implies $m \neq n$ and $n \neq p$. BUT... can we conclude $m \neq p$?
NO. Here is a counterexample: let $a=5, b=2, c=5$.
Then $a \neq b$ and $b \neq c$, but $a=c$. It follows that \boldsymbol{r} is NOT transitive.
Answers: The given \boldsymbol{r} is symmetric. But it is not reflexive and not transitive.

