Homework due Sep. 22

Assigned exercises: 4.4: 2, 3, 4.
4.5: $2,6,7,9,12,13,17$. (10 problems)

Graded exercises: 4.4: $2,3 . \quad 4.5: 7,9,12$.
Total possible points $=20$.
3 pt each for 5 graded problems, plus 5 for completion of the rest.

Exercise 4.4

(2) Find the inverse of $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(x)=x+10$. Show that $f^{-1} \circ f=$ $f \circ f^{-1}=I_{\mathbb{Z}}$.

Solution:

Following standard algebraic steps for inverses, we get: $f^{-1}(x)=x-10$.
For any $x \in \mathbb{Z}$ we have:

$$
\left(f^{-1} \circ f\right)(x)=f^{-1}(f(x))=(x+10)-10=x
$$

and

$$
\left(f \circ f^{-1}\right)(x)=f\left(f^{-1}(x)\right)=(x-10)+10=x
$$

This shows $f^{-1} \circ f=f \circ f^{-1}=I_{\mathbb{Z}}$.
(3) Let $f: \mathbb{N} \rightarrow \mathbb{Z}$ be defined by

$$
f(x)= \begin{cases}\frac{x-1}{2}, & \text { if } x \text { is odd } \\ \frac{-x}{2}, & \text { if } x \text { is even }\end{cases}
$$

Find the inverse and show that it works.

Solution:

Plug in a few x-values and see what this function looks like:

x	1	2	3	4	5	6
$f(x)$	0	-1	1	-2	2	-3

Observation: When x is odd, $f(x) \geq 0$; when x is even, $f(x)<0$.
Based on this observation, we conjecture the inverse $f^{-1}: \mathbb{Z} \rightarrow \mathbb{N}$ is defined by

$$
f^{-1}(x)= \begin{cases}2 x+1, & \text { if } x \geq 0 \\ -2 x, & \text { if } x<0\end{cases}
$$

To show that it works:

$$
\begin{gathered}
f^{-1}(f(x))= \begin{cases}2\left[\frac{x-1}{2}\right]+1=x, & \text { if } x \text { is odd } \\
-2\left[\frac{-x}{2}\right]=x, & \text { if } x \text { is even }\end{cases} \\
f\left(f^{-1}(x)\right)= \begin{cases}\frac{(2 x+1)-1}{2}=x, & \text { if } x \geq 0 \\
\frac{-(-2 x)}{2}=x, & \text { if } x<0\end{cases}
\end{gathered}
$$

Exercise 4.5

(7) Let $f: \mathbb{Z} \times \mathbb{N} \rightarrow \mathbb{Q}$ be defined by $f(x, y)=x / y$. Determine whether f is (a) injective; (b) surjective.

Solution:

The given f is not injective.
For example, $f(1,2)=f(2,4)=1 / 2$, but $(1,2) \neq(2,4)$.
f is surjective.
Reason: Any $w \in \mathbb{Q}$ is a rational number, and can be written as $w=x / y$ for some $x \in \mathbb{Z}$ and $y \in \mathbb{N}$, by the definition of rational number. Since $(x, y) \in \mathbb{Z} \times \mathbb{N}$ and $f(x, y)=w$, it follows that f is surjective.
(9) Prove: If $f: A \rightarrow B$ and $g: B \rightarrow C$ are both injective, then $g \circ f$ is injective.

Solution:

(1) Let A, B, C be sets, and $f: A \rightarrow B$ and $g: B \rightarrow C$ be injective functions.
(2) To show $g \circ f: A \rightarrow C$ is injective, suppose there exist $x_{1}, x_{2} \in A$ such that $(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)$.
(3) Then $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$.
(4) This implies $f\left(x_{1}\right)=f\left(x_{2}\right)$, since g is injective.
(5) Then we can conclude $x_{1}=x_{2}$, because f is injective.
(6) From (2) and (5) it follows that $g \circ f$ is injective.
(12) Prove: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. If $g \circ f$ is injective, then f is injective.

Solution:

(1) Let A, B, C be sets, and $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.
(2) Suppose $g \circ f$ is injective.
(3) To show $f: A \rightarrow B$ is injective, suppose there exist $x_{1}, x_{2} \in A$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$.
(4) Then we can compose g on both sides and get: $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$.
(5) This implies $x_{1}=x_{2}$, since $g \circ f$ is injective.
(6) From (3) and (5) it follows that f is injective.

