Homework due Sep. 15

Assigned exercises: 4.1: 2, 4, 6.
4.2: $2,4,6,11,12,13,16,18,19$. (12 problems)

Graded exercises: 4.1: 4, $6 . \quad 4.2: 4,11,19$.
Total possible points $=20$.
3 pt each for 5 graded problems, plus 5 for completion of the rest.

Exercise 4.1

(4) List all functions from $\{1,2\}$ to $\{1,2,3\}$.

Solution:

$$
\begin{aligned}
f_{1} & =\{(1,1),(2,1)\} \\
f_{2} & =\{(1,1),(2,2)\} \\
f_{3} & =\{(1,1),(2,3)\} \\
f_{4} & =\{(1,2),(2,1)\} \\
f_{5} & =\{(1,2),(2,2)\} \\
f_{6} & =\{(1,2),(2,3)\} \\
f_{7} & =\{(1,3),(2,1)\} \\
f_{8} & =\{(1,3),(2,2)\} \\
f_{9} & =\{(1,3),(2,3)\}
\end{aligned}
$$

(6) Define the logical operator $\wedge: A^{2} \rightarrow A$ as a function. (Here $A=\{T, F\}$.)

Solution:

The domain of \wedge is $A^{2}=\{(T, T),(T, F),(F, T),(F, F)\}$.
Since \wedge outputs T only when the input is (T, T), the function values are:
$\wedge((T, T))=T$
$\wedge((T, F))=F$
$\wedge((F, T))=F$
$\wedge((F, F))=F$

Exercise 4.2

(4) $g: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $g(x)=x^{2}-1$, and $S=[-2,2)$. Find the indicated images and/or pre-images.

Solution:

The graph of g is an upward opening parabola with minimum at $(0,-1)$. Its domain is $(-\infty, \infty)$ and range is $(-1, \infty)$.
(a) $g(S)$: On the interval $[-2,2)$, the values of g range between -1 (when $x=0$) and 3 (when $x=-2$). Therefore, $g(S)=[-1,3]$
(b) $g^{-1}(S)$: The inverse image for y-values below -1 is empty, since they are outside the range. For y-values between -1 and 2 we get $-\sqrt{3}<x<\sqrt{3}$.
Therefore, $g^{-1}(S)=(-\sqrt{3}, \sqrt{3})$
(c) $g\left(g^{-1}(S)\right)=g((-\sqrt{3}, \sqrt{3}))=[-1,2)$, because $g(0)=-1$ and $g(\pm \sqrt{3})=2$.

Answer: $g\left(g^{-1}(S)\right)=[-1,2)$ Note that right end is open.
(d) $g^{-1}(g(S))=g^{-1}([-1,3])=[-2,2]$. Answer: $g\left(g^{-1}(S)\right)=[-2,2]$
(11) Let $f: X \rightarrow Y$ and $A, B \subseteq X$. Prove: $f(A \cup B)=f(A) \cup f(B)$.

Solution:

(1) I will prove this by by showing subset inclusion both ways.
(2) Let X, Y be sets, $f: X \rightarrow Y$ be a function, and $A, B \subseteq X$.
(3) Proof of $f(A \cup B) \subseteq f(A) \cup f(B)$:
(3.1) Let $n \in f(A \cup B)$.
(3.2) Then there exisist m in $A \cup B$ such that $f(m)=n$. [defin. of image]
(3.3) This implies $m \in A$ or $m \in B$. [defn. of union]
(3.4) If $m \in A$ then $f(m) \in f(A)$, which is the same as saying $n \in f(A)$.

This implies $n \in f(A) \cup f(B)$. [defn. of union]
(3.5) On the other hand, if $m \in B$ then $f(m) \in f(B)$, and so $n \in f(B)$.

Again, this implies $n \in f(A) \cup f(B)$. [defn. of union]
(3.6) From (3.1), (3.4) and (3.5) we get: $n \in f(A \cup B) \Rightarrow n \in f(A) \cup f(B)$.
(3.7) It follows that $f(A \cup B) \subseteq f(A) \cup f(B)$.
(4) Proof of $f(A) \cup f(B) \subseteq f(A \cup B)$:
(4.1) Let $q \in f(A) \cup f(B)$.
(4.2) Then $q \in f(A)$ or $q \in f(B)$. [defn. of union]
(4.3) Consider each case: (i) $q \in f(A)$, (ii) $q \in f(B)$.
(i) If $q \in f(A)$: There is some $p \in A$ such that $f(p)=q$.

Since $p \in A$, we can say $p \in A \cup B$.
This means $f(p) \in f(A \cup B)$. That is: $q \in f(A \cup B)$.
(ii) If $q \in f(B)$: There is some $r \in B$ such that $f(r)=q$.

Since $r \in B$, we can say $r \in A \cup B$.
This means $f(r) \in f(A \cup B)$. That is: $q \in f(A \cup B)$
(4.4) It follows that if $q \in f(A) \cup f(B)$ then $q \in f(A \cup B)$.

Thus $f(A) \cup f(B) \subseteq f(A \cup B)$.
(19) Let $f: X \rightarrow Y$ and $A \subseteq Y$. Disprove: $f\left(f^{-1}(A)\right)=A$.

Solution:

Here is a counterexample: Let $X=Y=\mathbb{R}, f(x)=x^{2}$, and let $A=[-1,4]$.
Then $f^{-1}(A)=[-2,2]$, and $f\left(f^{-1}(A)\right)=[0,4] \neq A$.

