Assigned exercises: 4.1: 2, 4, 6. 4.2: 2, 4, 6, 11, 12, 13, 16, 18, 19. (12 problems) Graded exercises: 4.1: 4, 6. 4.2: 4, 11, 19. Total possible points = 20. 3 pt each for 5 graded problems, plus 5 for completion of the rest.

Exercise 4.1

(4) List all functions from $\{1, 2\}$ to $\{1, 2, 3\}$.

Solution:

 $f_{1} = \{(1, 1), (2, 1)\}$ $f_{2} = \{(1, 1), (2, 2)\}$ $f_{3} = \{(1, 1), (2, 3)\}$ $f_{4} = \{(1, 2), (2, 1)\}$ $f_{5} = \{(1, 2), (2, 2)\}$ $f_{6} = \{(1, 2), (2, 3)\}$ $f_{7} = \{(1, 3), (2, 1)\}$ $f_{8} = \{(1, 3), (2, 2)\}$ $f_{9} = \{(1, 3), (2, 3)\}$

(6) Define the logical operator $\wedge : A^2 \to A$ as a function. (Here $A = \{T, F\}$.) Solution:

Solution:

The domain of \wedge is $A^2 = \{(T,T), (T,F), (F,T), (F,F)\}$. Since \wedge outputs T only when the input is (T,T), the function values are: $\wedge((T,T)) = T$ $\wedge((T,F)) = F$ $\wedge((F,T)) = F$ $\wedge((F,F)) = F$

Exercise 4.2

(4) $g: \mathbb{R} \to \mathbb{R}$ is defined by $g(x) = x^2 - 1$, and S = [-2, 2). Find the indicated images and/or pre-images.

Solution:

The graph of g is an upward opening parabola with minimum at (0, -1). Its domain is $(-\infty, \infty)$ and range is $(-1, \infty)$.

(a) g(S): On the interval [-2, 2), the values of g range between -1 (when x = 0) and 3 (when x = -2). Therefore, g(S) = [-1, 3]

- (b) $g^{-1}(S)$: The inverse image for y-values below -1 is empty, since they are outside the range. For y-values between -1 and 2 we get $-\sqrt{3} < x < \sqrt{3}$. Therefore, $g^{-1}(S) = (-\sqrt{3}, \sqrt{3})$
- (c) $g(g^{-1}(S)) = g((-\sqrt{3},\sqrt{3})) = [-1,2)$, because g(0) = -1 and $g(\pm\sqrt{3}) = 2$. Answer: $g(g^{-1}(S)) = [-1,2)$ Note that right end is open.

(d)
$$g^{-1}(g(S)) = g^{-1}([-1,3]) = [-2,2]$$
. Answer: $g(g^{-1}(S)) = [-2,2]$

(11) Let $f : X \to Y$ and $A, B \subseteq X$. Prove: $f(A \cup B) = f(A) \cup f(B)$. Solution:

- (1) I will prove this by by showing subset inclusion both ways.
- (2) Let X, Y be sets, $f: X \to Y$ be a function, and $A, B \subseteq X$.
- (3) Proof of $f(A \cup B) \subseteq f(A) \cup f(B)$:
 - (3.1) Let $n \in f(A \cup B)$.
 - (3.2) Then there exists m in $A \cup B$ such that f(m) = n. [defin. of image]
 - (3.3) This implies $m \in A$ or $m \in B$. [defn. of union]
 - (3.4) If $m \in A$ then $f(m) \in f(A)$, which is the same as saying $n \in f(A)$. This implies $n \in f(A) \cup f(B)$. [defn. of union]
 - (3.5) On the other hand, if $m \in B$ then $f(m) \in f(B)$, and so $n \in f(B)$. Again, this implies $n \in f(A) \cup f(B)$. [defn. of union]
 - (3.6) From (3.1), (3.4) and (3.5) we get: $n \in f(A \cup B) \Rightarrow n \in f(A) \cup f(B)$.
 - (3.7) It follows that $f(A \cup B) \subseteq f(A) \cup f(B)$.
- (4) Proof of $f(A) \cup f(B) \subseteq f(A \cup B)$:
 - (4.1) Let $q \in f(A) \cup f(B)$.
 - (4.2) Then $q \in f(A)$ or $q \in f(B)$. [defn. of union]
 - (4.3) Consider each case: (i) $q \in f(A)$, (ii) $q \in f(B)$. (i) If $q \in f(A)$: There is some $p \in A$ such that f(p) = q. Since $p \in A$, we can say $p \in A \cup B$. This means $f(p) \in f(A \cup B)$. That is: $q \in f(A \cup B)$. (ii) If $q \in f(B)$: There is some $r \in B$ such that f(r) = q. Since $r \in B$, we can say $r \in A \cup B$. This means $f(r) \in f(A \cup B)$. That is: $q \in f(A \cup B)$ (4.4) It follows that if $q \in f(A) \cup f(B)$ then $q \in f(A \cup B)$.
 - (4.4) It follows that if $q \in f(A) \cup f(B)$ then $q \in f(A \cup B)$. Thus $f(A) \cup f(B) \subseteq f(A \cup B)$.
- (19) Let $f: X \to Y$ and $A \subseteq Y$. Disprove: $f(f^{-1}(A)) = A$. Solution:

Here is a counterexample: Let $X = Y = \mathbb{R}$, $f(x) = x^2$, and let A = [-1, 4]. Then $f^{-1}(A) = [-2, 2]$, and $f(f^{-1}(A)) = [0, 4] \neq A$.