Assigned exercises: 3.3: 8, 10, 12, 16, 18. 3.4: 4, 8, 10. 3.5: 2, 6, 7. (11 problems) Graded exercises: 3.3: 10, 16. 3.4: 8. 3.5: 2, 7. Total possible points = 20. 3 pt each for 5 graded problems, plus 5 for completion of the rest.

Exercise 3.3

(10) Given: r on \mathbb{R}^2 such that (u, v)r(x, y) iff $y - x^2 = v - u^2$. Determine whether r is reflexive, symmetric, transitive.

Solution:

(a) Check reflexive: Is $(u, v)\mathbf{r}(u, v)$ for all $(u, v) \in \mathbb{R}^2$?

Is $v - u^2 = v - u^2$ for all $(u, v) \in \mathbb{R}^2$? Yes, this is true.

Therefore, it is reflexive.

(b) Check symmetric:

Does $(u, v)\mathbf{r}(x, y) \Rightarrow (x, y)\mathbf{r}(u, v)$, for all $(x, y), (u, v) \in \mathbb{R}^2$? Yes, since $y - x^2 = v - u^2 \Rightarrow v - u^2 = y - x^2$, for all $(x, y), (u, v) \in \mathbb{R}^2$. Therefore, it is symmetric.

(c) Check transitive:

Does $(u, v)\mathbf{r}(x, y)$ and $(x, y)\mathbf{r}(p, q) \Rightarrow (u, v)\mathbf{r}(p, q)$, for all $(u, v), (x, y), (p, q) \in \mathbb{R}^2$? Does $(y - x^2 = v - u^2$ and $q - p^2 = y - x^2) \Rightarrow (q - p^2 = v - u^2)$, for all $(u, v), (x, y), (p, q) \in \mathbb{R}^2$?

Yes, since this is always true, it is transitive.

Answers: The given \boldsymbol{r} is reflexive, symmetric, and transitive.

(16) Prove: If $a \equiv b \mod n$ and $c \equiv d \mod n$, then $a + c \equiv b + d \mod n$.

Solution:

Let $n \in \mathbb{N}$ and $a, b, c, d \in \mathbb{Z}$ such that $a \equiv b \mod n$ and $c \equiv d \mod n$. By definition of mod: $a - b = k \cdot n$ and $c - d = l \cdot n$ for some $k, l \in \mathbb{Z}$. Adding these two equations we get: $(a + c) - (b + d) = (k + l) \cdot n$. This implies $a + c \equiv b + d \mod n$ (by defined of mod), since $(k + l) \in \mathbb{Z}$.

Exercise 3.4

(8) Given: \boldsymbol{r} on \mathbb{R}^2 such that $(u, v)\boldsymbol{r}(x, y)$ iff $y - x^2 = v - u^2$. Find all the equivalence classes.

Solution:

Equivalence classes typically exhibit some sort of pattern. Let's try some explorations and see if we can find one.

Suppose (u, v) = (0, 0):

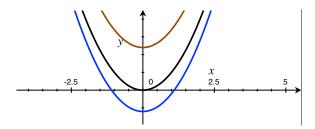
Then every related (x, y) must satisfy $y - x^2 = 0$, or $y = x^2$. Thus the equivalence class of (0, 0) is: $E_{(0,0)} = \{(x, y) \in \mathbb{R}^2 \mid y = x^2\}$ Suppose (u, v) = (1, 2):

Then every related (x, y) must satisfy $y - x^2 = 2 - 1^2$, or $y = x^2 + 1$. The equivalence class of (1, 2) is: $E_{(1,2)} = \{(x, y) \in \mathbb{R}^2 \mid y = x^2 + 1\}$

Suppose (u, v) = (-3, 3):

Then every related (x, y) must satisfy $y - x^2 = 3 - (-3)^2$, or $y = x^2 - 6$. The equivalence class of (-3, 3) is: $E_{(-3,3)} = \{(x, y) \in \mathbb{R}^2 \mid y = x^2 - 6\}$

Thus, we can conclude the equivalence classes of \boldsymbol{r} are parabolas of the form $y = x^2 + c$ for $c \in \mathbb{R}$. Some samples are shown in the graph below:



Exercise 3.3

(2) Let $\mathcal{A} = \{A_{\gamma}\}_{\gamma \in \Gamma}$ be an indexed collection of sets. Prove: $\left(\bigcap_{\gamma \in \Gamma} A_{\gamma}\right)^{C} = \bigcup_{\gamma \in \Gamma} A_{\gamma}^{C}$. Solution:

- (1) I will prove this by by showing subset inclusion both ways.
- (2) Let A = {A_γ}_{γ∈Γ} be an indexed collection of sets.
 (3) Proof of (∩_{γ∈Γ} A_γ)^C ⊆ ∪_{γ∈Γ} A_γ^C:
 (3.1) Let x ∈ (∩_{γ∈Γ} A_γ)^C.
 (3.2) Then x ∉ ∩_{γ∈Γ} A_γ. [definition of complement]
 (3.3) This implies x ∉ A_γ for some γ ∈ Γ. [negation of intersection defn.]
 (3.4) In other words, x ∈ A_γ^C for some γ ∈ Γ. [defn. of complement]
 (3.5) This implies x ∈ ∪_{γ∈Γ} A_γ^C. [defn. of union]
 (3.6) From (3.1) and (3.5) we get: x ∈ (∩_{γ∈Γ} A_γ)^C ⇒ x ∈ ∪_{γ∈Γ} A_γ^C.
 (3.7) It follows that (∩_{γ∈Γ} A_γ)^C ⊆ ∪_{γ∈Γ} A_γ^C [defn. of subset]
 (4) Proof of ∪_{γ∈Γ} A_γ^C ⊆ (∩_{γ∈Γ} A_γ)^C:
 (4.1) Let s ∈ ∪_{γ∈Γ} A_γ^C.
 (4.2) Then, for some γ ∈ Γ: s ∈ A_γ^C. [defn. of union]
 (4.3) For some γ ∈ Γ: s ∉ A_γ. [defn. of complement]
 (4.4) For some γ ∈ Γ, s ∉ A_γ implies s ∉ ∩_{γ∈Γ} A_γ.

[negation of intersection defn.]

(4.5) Thus $s \in \left(\bigcap_{\gamma \in \Gamma} A_{\gamma}\right)^{C}$. [defn. of complement]

(4.6) Lines (4.1) and (4.6) show that $s \in \bigcup_{\gamma \in \Gamma} A_{\gamma}^{C} \Rightarrow s \in \left(\bigcap_{\gamma \in \Gamma} A_{\gamma}\right)^{C}$. Therefore, $\bigcup_{\gamma \in \Gamma} A_{\gamma}^{C} \subseteq \left(\bigcap_{\gamma \in \Gamma} A_{\gamma}\right)^{C}$ [defn. of subset]

(5) It follows from (3) and (4) that $\left(\bigcap_{\gamma\in\Gamma}A_{\gamma}\right)^{C} = \bigcup_{\gamma\in\Gamma}A_{\gamma}^{C}$. [definition of set equality]

(7) Find $\bigcap_{k \in \mathbb{N}} \{ m \in \mathbb{N} \mid m \le k \}.$

Solution:

Let's write out and see what the first few sets in this collection look like.

 $k = 1: \{m \in \mathbb{N} \mid m \le 1\} = \{1\}$ $k = 2: \{m \in \mathbb{N} \mid m \le 2\} = \{1, 2\}$ $k = 3: \{m \in \mathbb{N} \mid m \le 3\} = \{1, 2, 3\}$

As k increases, the sets continue to include more and more elements of \mathbb{N} . The only element that every set contains in common is 1. Therefore,

 $\bigcap_{k\in\mathbb{N}}\{m\in\mathbb{N}\mid m\leq k\}=\{1\}$