Assigned exercises: 1.7: 6, 8, 12, 13, 14, 18, 21, 24, 34. 2.3: 2, 4. 2.4: 1, 3. (13 problems) Graded exercises: 1.7: 12, 18, 21. 2.3: 4. 2.4: 3. Total (maximum) possible points = 20. 3 pt for each of 5 graded problems, plus 5 for completion of the rest.

Exercise 1.7

(12) Given: There exists a natural number x such that for every integer y, x - y is a natural number. This is false, because for any $x \in \mathbb{N}$ there exists $-(x+1) - y \in \mathbb{Z}$, which means

This is false, because for any $x \in \mathbb{N}$ there exists $-(x+1) = y \in \mathbb{Z}$, which means x + y = -1 and this is not in \mathbb{N} .

Negation: For every natural number x there exists an integer y such that x - y is not a natural number.

In symbols: $(\forall x \in \mathbb{N}) \ (\exists y \in \mathbb{Z}) \ ((x - y) \notin \mathbb{N})$

- (18) Given: For all real numbers x and y, if $x \le y$ and $x \ge y$ then x = y. True. For any $x, y \in \mathbb{R}$ there are only 3 possibilities: x < y or x = y or x > y. If $x \le y$ and $x \ge y$ is true, then x = y is the only possibility. Negation: There exist real numbers x and y for which $x \le y$ and $x \ge y$, but $x \ne y$. In symbols: $(\exists x, y \in \mathbb{R})((x \le y) \land (x \ge y) \land (x \ne y))$
- (21) Given: There exists $x \in \mathbb{N}$ such that for all $y \in \mathbb{N}$, $x \neq 2y$ and $x \neq 2y 1$. False. Any $x \in \mathbb{N}$ is either even or odd. If it is even, then let y = x/2. If it is odd, then let y = (x + 1)/2. In both cases y exists, and it is in \mathbb{N} . Negation: For every $x \in \mathbb{N}$ there exists $y \in \mathbb{N}$ such that x = 2y or x = 2y - 1. In symbols: $(\forall x \in \mathbb{N}) \ (\exists y \in \mathbb{N}) \ ((x = 2y) \lor (x = 2y - 1))$.

Exercise 2.3

- (4) Prove: If $A \cap C \subseteq B \cap C$ and $A \cup C \subseteq B \cup C$ then $A \subseteq B$. Solution:
 - (a) Let A, B, C be sets such that $A \cap C \subseteq B \cap C$ and $A \cup C \subseteq B \cup C$.
 - (b) I want to prove $A \subseteq B$. By way of contradiction, suppose $A \nsubseteq B$.
 - (c) Then, $\exists x \in A$ such that $x \notin B$. [by negating defn of subset]
 - (d) Since $x \in A$, we know $x \in A \cup C$. [by definition of union]
 - (e) Then $x \in B \cup C$. [from hypothesis $A \cup C \subseteq B \cup C$]
 - (f) This implies $x \in B$ or $x \in C$. [by defined of union]
 - (g) Consider each possibility: If $x \in B$, then we have a contradiction with line (c), which says $x \notin B$.

- (h) On the other hand, if $x \in C$, then $x \in A \cap C$. [since $x \in A$ from line (c)]
- (i) This implies $x \in B \cap C$. [since $A \cap C \subseteq B \cap C$ by hypothesis]
- (j) Then $x \in B$. [by defined of intersection]
- (k) Again, we have a contradiction with line (c), which says $x \notin B$.
- (1) Since every case leads to a contradiction, our supposition that $A \not\subseteq B$ is impossible.
- (m) It follows that if $A \cap C \subseteq B \cap C$ and $A \cup C \subseteq B \cup C$, then $A \subseteq B$.

Remark: This solution is somewhat simpler if proved directly. But a contradiction based proof has been presented here following the authors' instructions.

Exercise 2.4

(3) Prove: If $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.

Solution:

- (a) Let A, B, C be sets such that $A \subseteq B$ and $B \subseteq C$.
- (b) To prove $A \subseteq C$, suppose $m \in A$.
- (c) Then $m \in B$. [since $A \subseteq B$]
- (d) This implies $m \in C$. [since $B \subseteq C$]
- (e) From line (b), (d), we have: $m \in A \Rightarrow m \in C$.
- (f) It follows that $A \subseteq C$.