A warmup

- 1. Let A be the set $\{1, 2, 3\}$. Consider the sets $S = \{1\}, T = \{2, 3\}$.
 - (a) What is $S \cup T$ and $S \cap T$?
 - (b) Show that $\{S, T\}$ is a partition of A.
 - (c) This partition corresponds to a (unique) equivalence relation on set A. An easy way to find this relation is to assume S, Tare its equivalence classes.
- 2. Let $A = \{p, q, r, s, t, u, v, w\}$, and $S = \{\{p, q, r, s\}, \{t, u\}, \{v, w\}\}$.
 - (a) What is $\bigcup S$ and $\bigcap S$?
 - (b) Check whether S satisfies all the conditions for being a partition of A.
 - (c) Find the equivalence relation that corresponds to S.

Moral of the story:

Every partition of a set induces an equivalence relation on it.

Key Theorems

(NOTE: These are informal, non-technical statements of the theorems.)

(1) Any pair of equivalence classes (of an equivalence relation on a set) is either identical, or disjoint.

(2a) Every equivalence relation on a set induces a partition on it.

AND

(2b) Every partition of a set induces an equivalence relation on it.

Proof strategy for (2a):

- 1. Consider the set S of equivalence classes of r.
- 2. Show that S satisfies all the definitions of a partition.
 - (a) Is every $X \in S$ non-empty?
 - (b) Is $\bigcup_{X \in S} X = A$? (c) Is $X_1 \cap X_2 = \emptyset$ whenever $X_1 \neq X_2$?

Proof strategy for (2b):

- 1. Let set S denote some partition of A.
- 2. Define a relation \sim on A such that $x \sim y$ iff x and y belong to the same "piece" of the partition S.
- 3. Show that \sim is reflexive, symmetric, and transitive.