A warmup

This warmup may be a bit of a challenge, but let's try it and see!

Let \boldsymbol{r} be a relation on $\mathbb{Z} \times \mathbb{N}$ defined by $(x, y)\boldsymbol{r}(u, v)$ iff xv = yu.

- 1. List a few sample elements in the domain of r.
- 2. What are the domain and image set of r?
- 3. Do a quick check/proof to convince yourself that \boldsymbol{r} is an equivalence relation.
- 4. Find the equivalence class of each of the following:
 - (a) (1,2)
 - (b) (2,1)
 - (c) (-5,2)
 - (d) (0,3)

A general hint: It might be easier to do these tasks if you rewrite the defining condition of r in a ratio/fraction form.

Moral of the story:

We can formally define the set of rational numbers \mathbb{Q} as equivalence classes of the above \boldsymbol{r} on $\mathbb{Z} \times \mathbb{N}$.

Some explorations

- 1. Let $A = \{1, 2, 3, 4, 5\}, B = \{2, 3, 4, 5, 6\}, C = \{3, 4, 5, 6, 7\}, D = \{4, 5, 6, 7, 8\}.$
 - (a) Find $A \cup B \cup C \cup D$.
 - (b) Find $A \cap B \cap C \cap D$.
- 2. For each $n \in \mathbb{N}$, consider the set $C_n = \{n, n+1, n+2, n+3, n+4\}$. Next, let's define the "family" (or "collection") of sets

$$C = \{C_1, C_2, C_3, C_4\}$$

- (a) Find $\bigcup_{k=1}^{4} C_k$.
- (b) Find $\bigcap_{k=1}^{4} C_k$.
- (c) Now consider the set $K = \{1, 2, 3, 4\}$, and carefully examine the following definitions

$$\bigcup_{k=1}^{4} C_k = \{x \mid x \in C_k \text{ for some } k \in K\}$$
$$\bigcap_{k=1}^{4} C_k = \{x \mid x \in C_k \text{ for all } k \in K\}$$

How does your solution process in parts (a) and (b) compare with these definitions?

- 3. Exercise: For each $n \in \mathbb{N}$, let $A_n = \{1, n, n^2\}$. For example, $A_1 = \{1\}, A_2 = \{1, 2, 4\}, A_3 = \{1, 3, 9\}$, etc.
 - (a) Find $\bigcup_{k=1}^{4} A_k$.
 - (b) Find $\bigcap_{k=1}^{4} A_k$.
 - (c) Find $\bigcup_{k=1}^{\infty} A_k$.
 - (d) Find $\bigcap_{k=1}^{\infty} A_k$.