A warmup

This warmup may be a bit of a challenge, but let's try it and see!
Let \boldsymbol{r} be a relation on $\mathbb{Z} \times \mathbb{N}$ defined by $(x, y) \boldsymbol{r}(u, v)$ iff $x v=y u$.

1. List a few sample elements in the domain of \boldsymbol{r}.
2. What are the domain and image set of \boldsymbol{r} ?
3. Do a quick check/proof to convince yourself that \boldsymbol{r} is an equivalence relation.
4. Find the equivalence class of each of the following:
(a) $(1,2)$
(b) $(2,1)$
(c) $(-5,2)$
(d) $(0,3)$

A general hint: It might be easier to do these tasks if you rewrite the defining condition of \boldsymbol{r} in a ratio/fraction form.

Moral of the story:

We can formally define the set of rational numbers \mathbb{Q} as equivalence classes of the above \boldsymbol{r} on $\mathbb{Z} \times \mathbb{N}$.

Some explorations

1. Let $A=\{1,2,3,4,5\}, B=\{2,3,4,5,6\}, C=\{3,4,5,6,7\}$, $D=\{4,5,6,7,8\}$.
(a) Find $A \cup B \cup C \cup D$.
(b) Find $A \cap B \cap C \cap D$.
2. For each $n \in \mathbb{N}$, consider the set $C_{n}=\{n, n+1, n+2, n+3, n+4\}$. Next, let's define the "family" (or "collection") of sets

$$
C=\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\}
$$

(a) Find $\bigcup_{k=1}^{4} C_{k}$.
(b) Find $\bigcap_{k=1}^{4} C_{k}$.
(c) Now consider the set $K=\{1,2,3,4\}$, and carefully examine the following definitions

$$
\begin{aligned}
& \bigcup_{k=1}^{4} C_{k}=\left\{x \mid x \in C_{k} \text { for some } k \in K\right\} \\
& \bigcap_{k=1}^{4} C_{k}=\left\{x \mid x \in C_{k} \text { for all } k \in K\right\}
\end{aligned}
$$

How does your solution process in parts (a) and (b) compare with these definitions?
3. Exercise: For each $n \in \mathbb{N}$, let $A_{n}=\left\{1, n, n^{2}\right\}$. For example, $A_{1}=\{1\}, A_{2}=\{1,2,4\}, A_{3}=\{1,3,9\}$, etc.
(a) Find $\bigcup_{k=1}^{4} A_{k}$.
(b) Find $\bigcap_{k=1}^{4} A_{k}$.
(c) Find $\bigcup_{k=1}^{\infty} A_{k}$.
(d) Find $\bigcap_{k=1}^{\infty} A_{k}$.

