Induction worksheet

For each exercise that uses summation notation, rewrite the sum in expanded form, and then prove the indicated result.

1. Prove that $\sum_{k=1}^{n} 2^{k-1} = 2^n - 1 \text{ for all } n \in \mathbb{N}.$

2. Prove that
$$\sum_{k=1}^{n} (3k-1) = \frac{1}{2}n(3n+1)$$
 for all $n \in \mathbb{N}$.

- 3. Prove that $\sum_{k=1}^{n} \frac{n}{(n+1)!} = 1 \frac{1}{(n+1)!}$ for all $n \in \mathbb{N}$.
- 4. Prove that 8 divides $5^{2n} 1$ for all $n \in \mathbb{N}$.
- 5. Prove that 5 divides $9^n 4^n$ for all $n \in \mathbb{N}$.

6. The following inequality holds for all $n \in \mathbb{N}$ larger than some k:

$$n^2 \le 2^n$$

Find k and prove the inequality using induction.

7. What justifies the use of induction in the above question, where the base case is not 1?

Just FYI

There is a closely related theorem known as the "principle of strong induction." It states:

Let T be a subset of \mathbb{N} such that

(a) $1 \in T$; and

(b) If $1, 2, \ldots, n \in T$, then $(n+1) \in T$ (for all $n \in \mathbb{N}$)

Then $T = \mathbb{N}$.

Practice proving a useful theorem

Theorem (informal statement): Any pair of equivalence classes is either identical or disjoint.

Proof strategy:

- 1. The theorem has the form: $p \Rightarrow q$ or rIt is helpful to first identify p, q and r. What are they?
- 2. One way to prove this is to suppose p is true and q is not true. Then we must show r is true.
- 3. Formally:
 - (a) Let \sim be an equivalence relation on set A, and let $u, v \in A$.
 - (b) Let E_u, E_v respectively denote the equivalence classes of u, v.
 - (c) Suppose $E_u \cap E_v \neq \emptyset$. We will then show _____
 - (d) This requires showing: \subseteq ____, and ___ \supseteq ____,
 - (e) Proof of \subseteq :
 - i. Let $x \in \underline{\qquad}$
 - ii. Then $u \sim x$ (*u* is related to *x*) (why? _____)
 - iii. This means $x \sim u$ (why? _____)
 - iv. Since $E_u \cap E_v \neq \emptyset$, there exists some $m \in E_u \cap E_v$, and we can show $x \sim m$ (how? ______)
 - v. We also know $m \sim v$ (why? _____)
 - vi. Then it is necessary that $x \sim v$ (why? _____)
 - vii. Thus we've shown $x \in \underline{\qquad} \Rightarrow x \in \underline{\qquad}$, and the subset proof is complete.

(f) Proof of \supseteq :