## Induction worksheet

For each exercise that uses summation notation, rewrite the sum in expanded form, and then prove the indicated result.

1. Prove that $\sum_{k=1}^{n} 2^{k-1}=2^{n}-1$ for all $n \in \mathbb{N}$.
2. Prove that $\sum_{k=1}^{n}(3 k-1)=\frac{1}{2} n(3 n+1)$ for all $n \in \mathbb{N}$.
3. Prove that $\sum_{k=1}^{n} \frac{n}{(n+1)!}=1-\frac{1}{(n+1)!}$ for all $n \in \mathbb{N}$.
4. Prove that 8 divides $5^{2 n}-1$ for all $n \in \mathbb{N}$.
5. Prove that 5 divides $9^{n}-4^{n}$ for all $n \in \mathbb{N}$.
6. The following inequality holds for all $n \in \mathbb{N}$ larger than some $k$ :

$$
n^{2} \leq 2^{n}
$$

Find $k$ and prove the inequality using induction.
7. What justifies the use of induction in the above question, where the base case is not 1 ?

## Just FYI

There is a closely related theorem known as the "principle of strong induction." It states:

Let $T$ be a subset of $\mathbb{N}$ such that
(a) $1 \in T$; and
(b) If $1,2, \ldots, n \in T$, then $(n+1) \in T \quad$ (for all $n \in \mathbb{N})$

Then $T=\mathbb{N}$.

## Practice proving a useful theorem

Theorem (informal statement): Any pair of equivalence classes is either identical or disjoint.

## Proof strategy:

1. The theorem has the form: $p \Rightarrow q$ or $r$

It is helpful to first identify $p, q$ and $r$. What are they?
2. One way to prove this is to suppose $p$ is true and $q$ is not true. Then we must show $r$ is true.
3. Formally:
(a) Let $\sim$ be an equivalence relation on set $A$, and let $u, v \in A$.
(b) Let $E_{u}, E_{v}$ respectively denote the equivalence classes of $u, v$.
(c) Suppose $E_{u} \cap E_{v} \neq \emptyset$. We will then show $\qquad$
(d) This requires showing $\qquad$ , and $\qquad$ ,
(e) Proof of $\subseteq$ :
i. Let $x \in$ $\qquad$
ii. Then $u \sim x$ ( $u$ is related to $x$ ) (why? $\qquad$ )
iii. This means $x \sim u$ (why? $\qquad$ )
iv. Since $E_{u} \cap E_{v} \neq \emptyset$, there exists some $m \in E_{u} \cap E_{v}$, and we can show $x \sim m$ (how? $\qquad$
v. We also know $m \sim v$ (why? $\qquad$ )
vi. Then it is necessary that $x \sim v$ (why? $\qquad$
vii. Thus we've shown $x \in \ldots \quad \Rightarrow \quad x \in \ldots$, and the subset proof is complete.
(f) Proof of $\supseteq$ :

