## Some warmups

A new definition: Let $A$ be a subset of $\mathbb{R}$. Then $A$ has a least element (say, $x$ ) if $x \leq y$ for all $y \in A$.

Exercise: Find the least element(s) of each of the following sets:

1. $S=\{x \mid x=3 n$ for some $n \in \mathbb{N}\}$
2. $T=\{x \mid x=3 n$ for some $n \in \mathbb{R}\}$
3. $U=\{x \in \mathbb{N} \mid x<37\}$
4. $V=\{x \in \mathbb{Z} \mid x<37\}$
5. $W=\{x \in \mathbb{Z} \mid 0<x<37\}$
6. $X=\{x \in \mathbb{R} \mid 0<x<37\}$
7. $Y=\{x \in \mathbb{N} \mid x \equiv 5 \bmod 8\}$

## Moral of the story?

Only subsets of $\mathbb{N}$ are guaranteed to have a least element. This is an axiom, known as The well-ordering property of $\mathbb{N}$.

## Another warmup

1. Let $T$ be a subset of $\mathbb{N}$ that satisfies the following condition:

$$
\text { If } n \in T \text { then }(n+1) \in T \quad(\text { for } n \in \mathbb{N})
$$

$T$ is free to be anything it wants as long as it satisfies the above. Determine which of the following are examples of a valid $T$
(a) $T_{1}=\{6,7,8, \ldots\}$
(b) $T_{2}=\{6,7,8\}$
(c) $T_{3}=\{6,8,10, \ldots\}$
(d) $T_{4}=\{-5,-4,-3, \ldots\}$
(e) $T_{5}=\{6.5,7.5,8.5, \ldots\}$
2. Now, define $S=\mathbb{N}-T$ for some valid form of $T$. Some "easy" questions
(a) Is $S \subseteq \mathbb{N}$ ?
(b) Does $S$ have a least element?
(c) Suppose 35 is the least element of $S$. Which of the following are possible forms of $T$ ?
$T=\{1,2,3, \ldots, 34\}$
$T=\{36,37,38, \ldots\}$
$T=$ any other set you can think of
(d) Try the same experiment by assuming other possible values for the least element of $S$. E.g., 7 or 5 or 2 or 1 . The goal is to determine whether it is possible to find a valid $T$ for each case.

## Moral of the story?

The only possible least element for $S$ is 1 .
In addition, $S$ must be a finite set of the form: $\{1,2,3, \ldots, k\}$

## The principle of mathematical induction

Theorem: Let $T$ be a subset of $\mathbb{N}$ such that
(a) $1 \in T$; and
(b) If $n \in T$ then $(n+1) \in T \quad$ (for all $n \in \mathbb{N}$ )

Then $T=\mathbb{N}$.

## Proof outline:

Let $T$ be as described above.
By way of contradiction, suppose $T \neq \mathbb{N}$.
Then there is some natural number $q$ that $T$ does not contain. (Why?)
Let $S=T-\mathbb{N}$. Note that $q \in S$. (Why?)
Then, $S$ is guaranteed to have a least element. (Why?)
Let $m$ be this least element.
Then $(m-1)$ is in $\mathbb{N}$, (Why?) and $(m-1) \in T$. (Why?)
This implies $m \in T$. (Why?)
Thus, we have arrived at a contradiction. (Why?)
It follows that the principle of mathematical induction is true.

