Some warmups

A new definition: Let A be a subset of \mathbb{R} . Then A has a least element (say, x) if $x \leq y$ for all $y \in A$.

Exercise: Find the least element(s) of each of the following sets:

1. $S = \{x \mid x = 3n \text{ for some } n \in \mathbb{N}\}$ 2. $T = \{x \mid x = 3n \text{ for some } n \in \mathbb{R}\}$ 3. $U = \{x \in \mathbb{N} \mid x < 37\}$ 4. $V = \{x \in \mathbb{Z} \mid x < 37\}$ 5. $W = \{x \in \mathbb{Z} \mid 0 < x < 37\}$ 6. $X = \{x \in \mathbb{R} \mid 0 < x < 37\}$ 7. $Y = \{x \in \mathbb{N} \mid x \equiv 5 \mod 8\}$

Moral of the story?

Only subsets of \mathbb{N} are guaranteed to have a least element. This is an axiom, known as *The well-ordering property of* \mathbb{N} .

Another warmup

1. Let T be a subset of \mathbb{N} that satisfies the following condition:

If
$$n \in T$$
 then $(n+1) \in T$ (for $n \in \mathbb{N}$)

T is free to be anything it wants as long as it satisfies the above. Determine which of the following are examples of a valid T

- (a) $T_1 = \{6, 7, 8, \ldots\}$ (b) $T_2 = \{6, 7, 8\}$ (c) $T_3 = \{6, 8, 10, \ldots\}$ (d) $T_4 = \{-5, -4, -3, \ldots\}$ (e) $T_5 = \{6.5, 7.5, 8.5, \ldots\}$
- 2. Now, define $S = \mathbb{N} T$ for some valid form of T. Some "easy" questions
 - (a) Is $S \subseteq \mathbb{N}$?
 - (b) Does S have a least element?
 - (c) Suppose 35 is the least element of S. Which of the following are possible forms of T?

 $T = \{1, 2, 3, \dots, 34\}$ $T = \{36, 37, 38, \dots\}$

- $T={\rm any}$ other set you can think of
- (d) Try the same experiment by assuming other possible values for the least element of S. E.g., 7 or 5 or 2 or 1. The goal is to determine whether it is possible to find a valid T for each case.

Moral of the story?

The only possible least element for S is 1. In addition, S must be a finite set of the form: $\{1, 2, 3, ..., k\}$

The principle of mathematical induction

Theorem: Let T be a subset of \mathbb{N} such that

(a) $1 \in T$; and

(b) If $n \in T$ then $(n+1) \in T$ (for all $n \in \mathbb{N}$)

Then $T = \mathbb{N}$.

Proof outline:

Let T be as described above. By way of contradiction, suppose $T \neq \mathbb{N}$. Then there is some natural number q that T does not contain. (Why?) Let $S = T - \mathbb{N}$. Note that $q \in S$. (Why?) Then, S is guaranteed to have a least element. (Why?) Let m be this least element. Then (m - 1) is in \mathbb{N} , (Why?) and $(m - 1) \in T$. (Why?) This implies $m \in T$. (Why?) Thus, we have arrived at a contradiction. (Why?) It follows that the principle of mathematical induction is true.