A warmup

Close your books and notes, and make a good-faith effort to define the following:

- 1. A relation
- 2. A reflexive relation

Be sure to include any needed context or subtext for your definition to be complete. Even if you don't get it 100% right, this is a great opportunity to sharpen your understanding!

Answers:

- 1. A relation from set A to set B is any subset of the Cartesian product $A \times B$. Not sure if "he" also wants us to define the Cartesian product $A \times B$, but here it is: $A \times B = \{(x, y) | x \in A \text{ and } y \in B\}$
- 2. A relation \boldsymbol{r} on set A is reflexive if $(x, x) \in \boldsymbol{r}$ for each $x \in A$. This can also be written as $x \boldsymbol{r} x$ for each $x \in A$.

Sample proof of an equivalence relation

Example: Let r be a relation on \mathbb{Z} defined by x r y iff $x \equiv y \mod 7$. Prove that r is an equivalence relation.

Proof:

- 1. Let \boldsymbol{r} be a relation on \mathbb{Z} defined by $x \boldsymbol{r} y$ iff $x \equiv y \mod 7$.
- 2. To prove \boldsymbol{r} is an equivalence relation, we must show it is reflexive, symmetric, and transitive.
- 3. Proof of reflexive:
 - (a) Let $x \in \mathbb{Z}$ [pick any element in the underlying set]
 - (b) Then $x x = 0 = 0 \cdot 7$ [by algebra]
 - (c) This means $x \equiv x \mod 7$. [defn. of congruence mod 7]
 - (d) Since this holds for all $x \in \mathbb{Z}$, it follows that r is reflexive. [by defn. of reflexive]

4. Proof of symmetry:

- (a) Let $x, y \in \mathbb{Z}$ such that xry. [pick any 2 related elements in underlying set]
- (b) Then x y = 7k for some $k \in \mathbb{Z}$. [by defn. of r]
- (c) This means -(x y) = -7k. [by algebra]
- (d) Thus, y x = 7n where n = -k is in \mathbb{Z} . [by algebra]
- (e) Therefore, $y \equiv x \mod 7$, which means $y\mathbf{r}x$.
- (f) It follows that \boldsymbol{r} is symmetric. [since $x\boldsymbol{r}y \Rightarrow y\boldsymbol{r}x$ for all $x, y \in \mathbb{Z}$]

5. Proof of transitive:

- (a) Let $x, y, z \in \mathbb{Z}$ such that xry and yrz. [pick any 3 pairwise related elements in underlying set]
- (b) Then, x y = 7k and y z = 7n for some $k, n \in \mathbb{Z}$ [students complete the story]

Some explorations

Equivalence relations have some amazing properties that make them very useful in many areas of mathematics.

Let's explore some of these using the relation congruence mod 2 on \mathbb{Z} . Here are some exercises:

- 1. Find all the elements of \mathbb{Z} related to 0. Let's name this set z_0 .
- 2. Find all the elements related to 1. Call this set z_1 .
- 3. Find all the elements related to 2. Call this set z_2 . :

Keep doing this till you notice some pattern.

What connections do you see between the sets z_0, z_1, z_2 , etc? Write your thoughts/observations on each of the following questions:

- 1. Are z_0, z_1, z_2 , etc, subsets of \mathbb{Z} ?
- 2. What is $z_0 \cap z_1$, $z_1 \cap z_2$, etc?
- 3. How about $z_0 \cap z_2$, $z_1 \cap z_3$, etc?
- 4. What is $z_0 \cup z_1 \cup z_2 \cup \ldots$?

Moral of the story: Equivalence classes