A warmup

Close your books and notes, and make a good-faith effort to define the following:

1. A relation
2. A reflexive relation

Be sure to include any needed context or subtext for your definition to be complete. Even if you don't get it 100% right, this is a great opportunity to sharpen your understanding!

Answers:

1. A relation from set A to set B is any subset of the Cartesian product $A \times B$. Not sure if "he" also wants us to define the Cartesian product $A \times B$, but here it is: $A \times B=\{(x, y) \mid x \in A$ and $y \in B\}$
2. A relation \boldsymbol{r} on set A is reflexive if $(x, x) \in \boldsymbol{r}$ for each $x \in A$. This can also be written as $x \boldsymbol{r} x$ for each $x \in A$.

Sample proof of an equivalence relation

Example: Let \boldsymbol{r} be a relation on \mathbb{Z} defined by $x \boldsymbol{r} y$ iff $x \equiv y \bmod 7$. Prove that \boldsymbol{r} is an equivalence relation.

Proof:

1. Let \boldsymbol{r} be a relation on \mathbb{Z} defined by $x \boldsymbol{r} y$ iff $x \equiv y \bmod 7$.
2. To prove \boldsymbol{r} is an equivalence relation, we must show it is reflexive, symmetric, and transitive.
3. Proof of reflexive:
(a) Let $x \in \mathbb{Z}$ [pick any element in the underlying set]
(b) Then $x-x=0=0 \cdot 7 \quad$ [by algebra]
(c) This means $x \equiv x \bmod 7$. [defn. of congruence $\bmod 7]$
(d) Since this holds for all $x \in \mathbb{Z}$, it follows that \boldsymbol{r} is reflexive. [by defn. of reflexive]
4. Proof of symmetry:
(a) Let $x, y \in \mathbb{Z}$ such that $x \boldsymbol{r} y$.
[pick any 2 related elements in underlying set]
(b) Then $x-y=7 k$ for some $k \in \mathbb{Z}$. \quad [by defn. of \boldsymbol{r}]
(c) This means $-(x-y)=-7 k$. [by algebra]
(d) Thus, $y-x=7 n$ where $n=-k$ is in \mathbb{Z}. [by algebra]
(e) Therefore, $y \equiv x \bmod 7$, which means $y \boldsymbol{r} x$.
(f) It follows that \boldsymbol{r} is symmetric. [since $x \boldsymbol{r} y \Rightarrow y \boldsymbol{r} x$ for all $x, y \in \mathbb{Z}$]
5. Proof of transitive:
(a) Let $x, y, z \in \mathbb{Z}$ such that $x \boldsymbol{r} y$ and $y \boldsymbol{r} z$. [pick any 3 pairwise related elements in underlying set]
(b) Then, $x-y=7 k$ and $y-z=7 n$ for some $k, n \in \mathbb{Z}$.
... [students complete the story]

Some explorations

Equivalence relations have some amazing properties that make them very useful in many areas of mathematics.

Let's explore some of these using the relation congruence $\bmod 2$ on \mathbb{Z}. Here are some exercises:

1. Find all the elements of \mathbb{Z} related to 0 . Let's name this set z_{0}.
2. Find all the elements related to 1 . Call this set z_{1}.
3. Find all the elements related to 2 . Call this set z_{2}. \vdots

Keep doing this till you notice some pattern.
What connections do you see between the sets z_{0}, z_{1}, z_{2}, etc?
Write your thoughts/observations on each of the following questions:

1. Are z_{0}, z_{1}, z_{2}, etc, subsets of \mathbb{Z} ?
2. What is $z_{0} \cap z_{1}, z_{1} \cap z_{2}$, etc?
3. How about $z_{0} \cap z_{2}, z_{1} \cap z_{3}$, etc?
4. What is $z_{0} \cup z_{1} \cup z_{2} \cup \ldots$?

Moral of the story: Equivalence classes

