Miscellaneous practice worksheet

1. Let S be a set, and let r be any relation on S (not necessarily an equivalence relation). For each $x \in S$ we can define its set of relatives, say [x], as follows

$$[x] = \{y \in S : (x, y) \in \mathsf{r}\}$$

Suppose $S = \{a, b, c, d, e, f\}$, and

- $\mathsf{r} = \{(a, a), (b, b), (b, c), (b, e), (c, e), (d, b), (d, c), (d, e), (e, b), (e, c), (e, e)\}$
- (a) Determine whether r is reflexive, symmetric or transitive. Prove your claims.
- (b) For each $x \in S$ find [x].

(c) Give an example of an equivalence relation on the given set S. Justify/prove your claim.

(From spring '12, Test 1)

- 2. Determine whether each of the following functions is injective, surjective, neither, or both. Prove your claims.
 - (a) f: ℝ × ℝ → ℝ × ℝ given by f(m, n) = (n, m).
 (b) g: ℝ → ℝ × ℝ given by g(t) = (t, t). (From spring '12, Test 2)
- 3. Write a statement negating each of the following statements. Negation must be written in complete words and sentences, with sparing use of symbolism (except for symbols used in the question itself).
 - (a) Let A and B be sets, and let $f : A \to B$ be a function. If f is injective then it has a left inverse.
 - (b) For all sets A, B and C, if $C \cap (A \cap B) = \emptyset$, then $C \cap A = \emptyset$ or $C \cap B = \emptyset$.
 - (c) There exists a subset S of N such that for all $x \in S$, x > y for some $y \in S$.

(From spring '12, final exam)

- 4. This question deals with images and pre-images, and is therefore grouped together. Other than that, the individual parts of the question are not directly connected to each other.
 - (a) Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 5 3x. Let $T = \{y \in \mathbb{R} : |y 2| < 1\}$. Find $f^{-1}(T)$ and $f(f^{-1}(T))$.
 - (b) Give an example of a function $f : A \to B$ and $T \subseteq B$ such that $f(f^{-1}(T)) \neq T$. Be sure to clearly define your sets A, B and T, and to show $f(f^{-1}(T)) \neq T$.
 - (c) Same as question (b), except find $S \subseteq A$ such that $f^{-1}(f(S)) \neq S$.

(From spring '12, Test 2)

- 5. Here is a new definition: Let A be a set, and let $f : A \to A$ and $g : A \to A$ be functions. The functions f and g are said to *commute* if $g \circ f = f \circ g$. Let f, g and h be functions from \mathbb{R} to \mathbb{R} defined by f(x) = -x, $g(x) = x^n$ and h(x) = ax + b. Here $n \in \mathbb{N}$ and $a, b \in \mathbb{R}$.
 - (a) Determine a condition on n that will guarantee that f and g commute. Justify or prove your claim.
 - (b) Show that f and h commute if and only if b = 0.

(From spring '12, Test 2)

6. Prove the following statement

 $3 + 11 + \dots + (8n - 5) = 4n^2 - n$ for all $n \in \mathbb{N}$

(From spring '12, final exam)

- 7. Give a mathematically precise definition for the following terms. Include any context needed for your definition to make sense.
 - (a) An injective function.
 - (b) A surjective function.
 - (c) The inverse of a function.
 - (d) A partition (of a set).

(From misc exams)

- 8. Let $f : A \to B$ be an injective function. Define a function $g : A \to f(A)$ by g(x) = f(x) for all $x \in A$. Show that g is bijective.
- 9. Prove that $2^{n+1} < n!$ for all natural numbers larger than some natural number k.
- 10. Let **r** be a relation on \mathbb{Z} defined by $x \mathbf{r} y$ iff $|x y| \leq 3|$. Determine whether **r** is reflexive, symmetric, and transitive.
- 11. Let $S = \mathbb{N} \times \mathbb{N}$ and suppose **r** is a relation on S defined by $(u, v)\mathbf{r}(x, y)$ iff $u^v = x^y$.
 - a. Show that **r** is an equivalence relation on S.
 - b. Find the equivalence class $E_{(9,2)}$.
 - c. Find an equivalence class with exactly one element.
 - d. Find an equivalence class with exactly two elements.
- 12. Let $\mathcal{B} = \{B_{\alpha}\}_{\alpha \in \Gamma}$ be an indexed collection of sets, and let C be a set. Prove that $C \cap \left(\bigcup_{\alpha \in \Gamma} B_{\alpha}\right) = \bigcup_{\alpha \in \Gamma} (C \cap B_{\alpha}).$

(From spring '12, Test 1)

- 13. One of the exercises in the textbook proves that if f: A → B, and C, D ⊆ A, then f(C ∩ D) ⊆ f(C) ∩ f(D). Prove the following generalization of this result:
 (a) Let f: A → B be a function from set A to B. Let {C_j} for j ∈ J be a collection of subsets of A. Then f(⋂_{j∈J} C_j) ⊆ ⋂_{j∈J} f(C_j).
 (b) Try to prove ⋂_{j∈J} f(C_j) ⊆ f(⋂_{j∈J} C_j) and explain where/why the proof fails.
- 14. Let A and B be sets and let f : A → B be a function. Suppose C ⊆ A and D ⊆ B. Prove or disprove each of the following

 (a) If f(C) ⊆ D, then C ⊆ f⁻¹(D).
 (b) If C ⊆ f⁻¹(D), then f(C) ⊆ D.

 (From spring '12, final exam)
- 15. Let \mathbf{r} and \mathbf{s} be equivalence relations on some set A.

(a) Show that the relation $\mathbf{r} \cup \mathbf{s}$ is reflexive and symmetric on A.

(b) Show that $\mathbf{r} \cup \mathbf{s}$ need not be transitive on A.

[Hint: Denote the relation $\mathbf{r} \cup \mathbf{s}$ as \mathbf{u} , say. What would make \mathbf{u} reflexive, symmetric or transitive on A? How does that relate to what you know about \mathbf{r} and \mathbf{s} ?]

(From spring '12, final exam)