A warmup

Recall: Neither order, nor duplication of elements makes any difference to a set. In other words,

$$
\{0,3\}=\{3,3,3,0,3,0,0,3\}, \text { etc. }
$$

But, that is a problem when we want to create mathematical structures where order and duplication both matter, such as ordered pairs. With that in mind, here is a set theoretic definition of an ordered pair

$$
(x, y)=\{\{x\},\{x, y\}\}
$$

It can be proved that: $(x, y)=(p, q)$ iff $x=p$ and $y=q$.
This implies: $(x, y)=(y, x)$ iff $x=y$. [Q: Can you prove it?]
Exercise: Some clever mathematician came up with the above idea for ordered pairs. Unfortunately, it does NOT generalize to ordered triples. For example, it doesn't work if we were to define

$$
(x, y, z)=\{\{x\},\{x, y\},\{x, y, z\}\}
$$

To show that it fails, find two different ordered triples whose set theoretic definition looks the same.

Proofs involving Cartesian products

Example: For all sets $A, B, C,(A \cap B) \times C=(A \times C) \cap(B \times C)$.

Proof:

1. Let A, B, C be sets.
2. To prove equality, we must show subset both ways.
3. Proof of $(A \cap B) \times C \subseteq(A \times C) \cap(B \times C)$.
(a) Let $(x, y) \in(A \cap B) \times C$. [pick any element in cross product]
(b) Then $x \in(A \cap B)$ and $y \in C$. [defn. of cross product]
(c) This means $x \in A$ and $x \in B$. [defn. of $A \cap B]$
(d) Thus, $(x, y) \in A \times C$ and $(x, y) \in B \times C$. [since $y \in C$ and by defn. of cross product]
(e) Then $(x, y) \in(A \times C) \cap(B \times C)$ [from line (d), by defn. of intersection]
(f) Thus, we've shown $(x, y) \in(A \cap B) \times C \Rightarrow$

$$
(x, y) \in(A \times C) \cap(B \times C)
$$

(g) It follows that $(A \cap B) \times C \subseteq(A \times C) \cap(B \times C)$.
4. Next, we show that $(A \times C) \cap(B \times C) \subseteq(A \cap B) \times C$.
(a) Let ... [complete the story]

Some "easy" exercises

1. Let $S=\{1,2\}, T=\{l, m, n\}$.

Find $S \times S$ and $T \times S$.
2. Show that $(a, a)=\{\{a\}\}$.
3. Let $S=\{3\}$ and $T=\{l, m, n\}$.

How many possible relations exist from S to T ?
List all of them in correct set theoretic notation.
4. Let S be the set of students in this class, and C be the set of chairs in this classroom. Define a relation from S to C.

