A warmup

Recall: Neither order, nor duplication of elements makes any difference to a set. In other words,

$$\{0,3\} = \{3,3,3,0,3,0,0,3\}, \text{ etc.}$$

But, that is a problem when we want to create mathematical structures where order and duplication both matter, such as ordered pairs. With that in mind, here is a set theoretic definition of an ordered pair

$$(x,y) = \{\{x\}, \{x,y\}\}\$$

It can be proved that: (x, y) = (p, q) iff x = p and y = q. This implies: (x, y) = (y, x) iff x = y. [Q: Can you prove it?]

Exercise: Some clever mathematician came up with the above idea for ordered pairs. Unfortunately, it does NOT generalize to ordered triples. For example, it doesn't work if we were to define

$$(x,y,z) = \{\{x\},\{x,y\},\{x,y,z\}\}$$

To show that it fails, find two different ordered triples whose set theoretic definition looks the same.

Proofs involving Cartesian products

Example: For all sets $A, B, C, (A \cap B) \times C = (A \times C) \cap (B \times C)$.

Proof:

- 1. Let A, B, C be sets.
- 2. To prove equality, we must show subset both ways.
- 3. Proof of $(A \cap B) \times C \subseteq (A \times C) \cap (B \times C)$.
 - (a) Let $(x, y) \in (A \cap B) \times C$. [pick any element in cross product]
 - (b) Then $x \in (A \cap B)$ and $y \in C$. [defn. of cross product]
 - (c) This means $x \in A$ and $x \in B$. [defn. of $A \cap B$]
 - (d) Thus, $(x, y) \in A \times C$ and $(x, y) \in B \times C$. [since $y \in C$ and by defn. of cross product]
 - (e) Then $(x, y) \in (A \times C) \cap (B \times C)$ [from line (d), by defn. of intersection]
 - (f) Thus, we've shown $(x, y) \in (A \cap B) \times C \Rightarrow$ $(x, y) \in (A \times C) \cap (B \times C).$
 - (g) It follows that $(A \cap B) \times C \subseteq (A \times C) \cap (B \times C)$.
- 4. Next, we show that $(A \times C) \cap (B \times C) \subseteq (A \cap B) \times C$.
 - (a) Let ... [complete the story]

Some "easy" exercises

- 1. Let $S = \{1, 2\}, T = \{l, m, n\}$. Find $S \times S$ and $T \times S$.
- 2. Show that $(a, a) = \{\{a\}\}.$
- 3. Let S = {3} and T = {l, m, n}.
 How many possible relations exist from S to T?
 List all of them in correct set theoretic notation.
- 4. Let S be the set of students in this class, and C be the set of chairs in this classroom. Define a relation from S to C.