Test practice worksheet

1. Write negations for each of the following:
(a) If x is an integer, then there is no rational number y such that $y^{2}=x$.
(b) If A, B, C, D are sets such that $A \subseteq B$ and $C \subseteq D$, then $A \cup C \subseteq B \cup D$.
(c) If $x+y$ is even and $y+z$ is even, then $x+z$ is even.
(d) If f is a continuous function, then it is both differentiable and integrable.
(e) If f is a continuous function, then it is differentiable, integrable, squarable and filterable.
(f) If f is a continuous and increasing function on \mathbb{R}, then $f(x)>$ $f(y)$ whenever $x>y$.
(g) If f is a differentiable and increasing function on \mathbb{R}, then $f(x)>f(y)$ and $f^{\prime}(x)>f^{\prime}(y)$ whenever $x>y$.
(h) If a person eats an apple a day, it will keep the doctor away.
(i) If n is a positive integer it can be written as the sum of distinct powers of 2 , or as the sum of distinct powers of 3 .
(j) The roots of this polynomial are either all real or all complex.
2. Write the contrapositive of each statement above.
3. Rephrase each statement in Q1 above in a form that does not involve "If ... then." For example, "If x is a natural number then it is positive" can be written as, "All natural numbers are positive."
4. Consider the statements:
$P:=$ Dogs eat meat
$Q:=$ Rome is in Italy
$R:=$ Chocolate prevents cavities
$S:=$ The moon is made of green cheese
Based on the known, real-world truth value of these statements, determine whether each of the following is true or false:
(a) If P, then Q
(b) If P, then R
(c) If R, then S
(d) If S, then Q
(e) If Q, then S
