Some logic warmups

1. Consider the theorem: "If m^{2} is odd, then m is odd." What, if anything, is wrong with each of the following "proofs."
(a) Suppose m is odd. Then by definition $m=2 k+1$ for some integer k. Thus $m^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$, which is odd. Thus, we've shown if m^{2} is odd, then m is odd.
(b) Suppose m is not odd. Then m is even, and by definition $m=2 k$ for some integer k. Thus $m^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)$, which is even. This implies, if m is not odd then m^{2} is not odd. It follows that if m^{2} is odd, then m is odd.
2. Consider the theorem: "If x is rational and y is irrational, then $x y$ is irrational." Consider the following proof:
Suppose x is rational and y is irrational.
By way of contradiction, suppose $x y$ is rational.
Then, by definition, $x=p / q$ and $x y=m / n$ for some integers p, q, m, n, with $q \neq 0$ and $n \neq 0$. This implies

$$
y=\frac{x y}{x}=\frac{m / n}{p / q}=\frac{m q}{n p}
$$

Since $m q$ and $n p$ are integers, this implies y is rational, which is a contradiction. Thus we've proved if x is rational and y is irrational, then $x y$ is irrational.
(a) Find a counterexample that proves this theorem is false.
(b) What is/are the errors in the above proof?
(c) We can make the theorem true by adding some condition to the hypothesis. What is that condition?

Q: Consider the sets:

$$
\begin{aligned}
& A=\{3,0,6,3,5,3,0,6\} \\
& B=\{0,3,5,6\} \\
& C=\{6,5,3,0\} \\
& D=\{3,6,0,5\} \\
& E=\{0,0,0,3,3,3,3,5,5,5,5,5,6,6,6,6,6,6,6\}
\end{aligned}
$$

Something seems "fishy" about these sets. What? Is there some relationship between them? Discuss some thoughts and ideas.

Ans:

They are all the same set!
Can you prove $A=B=C=D=E$?

Moral of the story:

Neither order, nor duplication of elements makes any difference to a set.

