Negation: Introductory exercises

Write a negation of each of the following in words and in symbols (where possible).

1. Words: Every natural number is rational.

Symbols: $(\forall m \in \mathbb{N})(m \in \mathbb{Q}) \quad$ OR $\quad(m \in \mathbb{N}) \Rightarrow(m \in \mathbb{Q})$
2. Words: There exists a natural number that is rational.

Symbols: $(\exists m \in \mathbb{N})(m \in \mathbb{Q})$
3. Words: Every real number is either rational or irrational.

Symbols: $(\forall x \in \mathbb{R})((x \in \mathbb{Q}) \vee(x \in(\mathbb{R}-\mathbb{Q})))$
OR $\quad(x \in \mathbb{R}) \Rightarrow((x \in \mathbb{Q}) \vee(x \in(\mathbb{R}-\mathbb{Q})))$
4. Words: Every interval of real numbers contains rational numbers and irrational numbers.
Symbols: <leave for later>
5. Words: Every interval of real numbers contains rational numbers or irrational numbers.
Symbols: <leave for later>
6. Words: There exists an interval of real numbers that contains rational numbers and irrational numbers.
Symbols: <leave for later>
7. Words: For any positive real number x, there exists a positive real number y such that $y^{2}=x$.
Symbols: $\left(\forall x \in \mathbb{R}^{+}\right) \quad\left(\left(\exists y \in \mathbb{R}^{+}\right) \ni\left(y^{2}=x\right)\right)$
8. Words: There exists a positive real number y such that for all positive real numbers $x, y^{2}=x$.
Symbols: $\left(\exists y \in \mathbb{R}^{+}\right) \ni\left(\forall x \in \mathbb{R}^{+}, y^{2}=x\right)$

