A warmup

Anand is having this conversation with a student.

Anand: Hey, guess what - I've just discovered a cool new theorem! It says: "Every integer that is a perfect square is even."

Student: Wow, that's cool! Can you prove it?

Anand: Sure! Here's a proof:

Consider the number 4, which is a perfect square, since $4 = 2^2$. Clearly, 4 is even by definition, since $4 = 2 \times 2$.

Next consider the number 16, which is a perfect square, because $16 = 4^2$. By definition, it is even, since 16 = 2(8).

By similar argument I can show that the numbers 36, 64, 100, 900, 2500, and infinitely many others are perfect squares, and they are all even.

It follows that every perfect square is even.

What is the moral of the story?!!!

Class exercises

Rewrite each of the following in two different forms:

- (i) Using only/primarily mathematical symbols.
- (ii) In the form "If p, then q."
- 1. The sum of any two rational numbers is rational.
- 2. For any positive real number x, there exists a positive real number y such that $y^2 = x$.
- 3. The product of any two odd integers is odd.
- 4. The sum of a rational number and an irrational number, is irrational.
- 5. For every integer x, either x is a natural number or -x is a natural number.
- 6. There exist integers l, m, n, such that $l^2 + m^2 = n^2$.

LaTeX exercises

Rewrite each of the following in two different forms in LaTeX:

- (i) Using only/primarily mathematical symbols.
- (ii) In the form "If p, then q."
- 1. The sum of any two rational numbers is rational.
- 2. For any positive real number x, there exists a positive real number y such that $y^2 = x$.
- 3. The product of any two odd integers is odd.
- 4. The sum of a rational number and an irrational number, is irrational.