A guided review of basic trigonometry

1. Make a neat sketch of a right triangle and label its side-lengths using any convenient notation. Pick one of the acute angles and call it θ . Define the following trigonometric quantities with reference to the labels on your right triangle

$$\sin \theta = \cos \theta = \tan \theta =$$

2. Define each of the following trigonometric quantities in terms of $\sin \theta$ and $\cos \theta$. In each case, also define the quantity as the reciprocal of one of the other trig. quantities. E.g., $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{1}{\cot \theta}$

 $\cot \theta = \qquad \quad \sec \theta = \qquad \quad \csc \theta =$

- 3. A major source of confusion when working with trigonometric functions is the notation, which is often non-intuitive. Explain the difference between the trig. quantities shown in each of the following groups
 - (a) $\sin^2 \theta$, $\sin \theta^2$, $(\sin \theta)^2$, $\sin(\theta^2)$ (b) $\sin^{-1} \theta$, $(\sin \theta)^{-1}$, $\sin(\theta^{-1})$
- 4. Refer back to your previous sketch of the right triangle and its labels. Compute the value of $(\sin^2 \theta + \cos^2 \theta)$ in terms of the side-lengths of your triangle.
- 5. The most useful and general way to define the sine and cosine function is via the unit circle. Make a neat sketch of an x-y coordinate system with a large unit circle centered at the origin. Pick any point, say P, on the circle. Let θ denote the angle of P's orientation with respect to the positive x-axis. (Show P and θ on your sketch.) Define $\sin \theta$ and $\cos \theta$ in terms of the (x, y) coordinates of P.
- 6. To get a brief glimpse of how/why the unit circle perspective can help you, find answers to the following questions
 - (a) What is the value of: $\sin(0)$, $\cos(0)$, $\sin(\pi/2)$, $\cos(\pi/2)$, $\sin(\pi)$, $\cos(\pi)$, $\sin(3\pi/2)$, $\cos(3\pi/2)$, $\sin(2\pi)$, $\cos(2\pi)$, $\sin(27\pi)$.
 - (b) Solve the equation: $\cos^2 \theta 1 = 0$.