A guided review of basic trigonometry

1. Make a neat sketch of a right triangle and label its side-lengths using any convenient notation. Pick one of the acute angles and call it θ. Define the following trigonometric quantities with reference to the labels on your right triangle

$$
\sin \theta=\quad \cos \theta=\quad \tan \theta=
$$

2. Define each of the following trigonometric quantities in terms of $\sin \theta$ and $\cos \theta$. In each case, also define the quantity as the reciprocal of one of the other trig. quantities. E.g., $\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{1}{\cot \theta}$

$$
\cot \theta=\quad \sec \theta=\quad \csc \theta=
$$

3. A major source of confusion when working with trigonometric functions is the notation, which is often non-intuitive. Explain the difference between the trig. quantities shown in each of the following groups
(a) $\sin ^{2} \theta, \quad \sin \theta^{2}, \quad(\sin \theta)^{2}, \quad \sin \left(\theta^{2}\right)$
(b) $\sin ^{-1} \theta, \quad(\sin \theta)^{-1}, \quad \sin \left(\theta^{-1}\right)$
4. Refer back to your previous sketch of the right triangle and its labels. Compute the value of $\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$ in terms of the side-lengths of your triangle.
5. The most useful and general way to define the sine and cosine function is via the unit circle. Make a neat sketch of an $x-y$ coordinate system with a large unit circle centered at the origin. Pick any point, say P, on the circle. Let θ denote the angle of P 's orientation with respect to the positive x-axis. (Show P and θ on your sketch.) Define $\sin \theta$ and $\cos \theta$ in terms of the (x, y) coordinates of P.
6. To get a brief glimpse of how/why the unit circle perspective can help you, find answers to the following questions
(a) What is the value of: $\sin (0), \cos (0), \sin (\pi / 2), \cos (\pi / 2), \sin (\pi), \cos (\pi)$, $\sin (3 \pi / 2), \cos (3 \pi / 2), \sin (2 \pi), \cos (2 \pi), \sin (27 \pi)$.
(b) Solve the equation: $\cos ^{2} \theta-1=0$.
