Sampling distribution model for comparing 2 proportions

Let p_1 , p_2 denote the true proportions of something in a population.

(Note: That means p_1 and p_2 are both population parameters.)

Example: p_1, p_2 = true proportion of student-atheletes among first-years, sophomores.

Suppose the respective sampled values are: \hat{p}_1 , \hat{p}_2 . The respective sample/group sizes are: n_1 , n_2 .

The sampling distribution model for $\hat{p}_1 - \hat{p}_2$:

The conditions:

- a. The data in each sample (or group) must be independent.
- b. The samples/groups must be independent of each other.
- c. Each sample/group must be large enough.

Sampling distribution model for comparing 2 means

Let μ_1 , μ_2 denote the true mean values of something in a population.

(As before, that would make both μ_1 and μ_2 population parameters.)

Example: μ_1 , μ_2 = mean # of hours of on-campus employment for first-years, sophomores.

Suppose the respective sampled means are: \bar{y}_1, \bar{y}_2 . The respective sampled standard deviations are: s_1, s_2 . The respective sample/group sizes are: n_1, n_2 .

The sampling distribution model for $\bar{y}_1 - \bar{y}_2$:

$$T_{df}\left(\mu_1 - \mu_2, \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}\right)$$

The degrees of freedom (df) of the T-distribution are given by a messy formula that students won't be required to know. You will be given the df when needed.

The conditions:

- a. The data in each sample (or group) must be independent.
- b. The samples/groups must be independent of each other.
- c. Each sample/group must be approximately normally distributed.