Sampling distribution model for comparing 2 proportions

Let p_{1}, p_{2} denote the true proportions of something in a population.
(Note: That means p_{1} and p_{2} are both population parameters.)
Example: $p_{1}, p_{2}=$ true proportion of student-atheletes among first-years, sophomores.
Suppose the respective sampled values are: \hat{p}_{1}, \hat{p}_{2}.
The respective sample/group sizes are: n_{1}, n_{2}.
The sampling distribution model for $\hat{p}_{1}-\hat{p}_{2}$:

$$
N\left(p_{1}-p_{2}, \sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}\right)
$$

The conditions:
a. The data in each sample (or group) must be independent.
b. The samples/groups must be independent of each other.
c. Each sample/group must be large enough.

Sampling distribution model for comparing 2 means

Let μ_{1}, μ_{2} denote the true mean values of something in a population.
(As before, that would make both μ_{1} and μ_{2} population parameters.)
Example: $\mu_{1}, \mu_{2}=$ mean \# of hours of on-campus employment for first-years, sophomores.
Suppose the respective sampled means are: \bar{y}_{1}, \bar{y}_{2}.
The respective sampled standard deviations are: s_{1}, s_{2}.
The respective sample/group sizes are: n_{1}, n_{2}.

The sampling distribution model for $\bar{y}_{1}-\bar{y}_{2}$:

$$
T_{d f}\left(\mu_{1}-\mu_{2}, \quad \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}\right)
$$

The degrees of freedom $(d f)$ of the T-distribution are given by a messy formula that students won't be required to know. You will be given the $d f$ when needed.

The conditions:

a. The data in each sample (or group) must be independent.
b. The samples/groups must be independent of each other.
c. Each sample/group must be approximately normally distributed.

