
ar
X

iv
:p

hy
si

cs
/0

50
20

67
v3

  [
ph

ys
ic

s.
so

c-
ph

] 
 2

4 
Ju

n 
20

05

The power of a good idea: quantitative modeling of thespread of ideas from epidemiologial modelsLuís M. A. Bettenourt1, Ariel Cintrón-Arias2,3 ∗,David I. Kaiser4 and Carlos Castillo-Chávez2,3

1CCS-3, Computer and Computational Sienes,Los Alamos National Laboratory, Los Alamos NM 87545
2Center for Applied Mathematis, Cornell University657 Rhodes Hall, Ithaa NY 14853

3Department of Mathematis and Statistis, Arizona State UniversityPO BOX 871804. Tempe, AZ - 85287 - 1804
4Center for Theoretial Physis and Department of Physis,Massahusetts Institute of Tehnology,77 Massahusetts Ave., Cambridge MA 02139February 2, 2008Preprint Number: LAUR-05-0485, MIT-CTP-3589

∗orresponding author: ariel�am.ornell.edu 1

http://arXiv.org/abs/physics/0502067v3


AbstratThe population dynamis underlying the di�usion of ideas hold many qualitativesimilarities to those involved in the spread of infetions. In spite of muh suggestiveevidene this analogy is hardly ever quanti�ed in useful ways. The standard bene�tof modeling epidemis is the ability to estimate quantitatively population average pa-rameters, suh as interpersonal ontat rates, inubation times, duration of infetiousperiods, et. In most ases suh quantities generalize naturally to the spread of ideasand provide a simple means of quantifying soiologial and behavioral patterns. Herewe apply several paradigmati models of epidemis to empirial data on the advent andspread of Feynman diagrams through the theoretial physis ommunities of the USA,Japan, and the USSR in the period immediately after World War II. This test ase hasthe advantage of having been studied historially in great detail, whih allows valida-tion of our results. We estimate the e�etiveness of adoption of the idea in the threeommunities and �nd values for parameters re�eting both intentional soial organiza-tion and long lifetimes for the idea. These features are probably general harateristisof the spread of ideas, but not of ommon epidemis.
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1 IntrodutionDynamial population models are used to predit average behavior, generate hypothe-ses or explore mehanisms aross many �elds of siene inluding eology [1, 2, 3℄,epidemiology [4, 5, 6, 7℄ and immunology [8℄, to name but a few. Traditionally, epi-demiologial models fous on the dynamis of �traits� transmitted between individuals,ommunities, or regions (within spei� temporal or spatial sales). Traits may inlude(i) a ommuniable disease suh as measles [1℄ or HIV [9℄; (ii) a ultural harateristisuh us a religious belief, a fad [10, 11, 12, 13℄, an innovation [14℄, or fanati behav-ior [15℄; (iii) an addition suh us drug use [16℄ or a disorder [17℄; or (iv) informationspread through, e.g., rumors [18, 19℄, email messages [22℄, weblogs [23℄, or peer-to-peeromputer networks [24℄.The earliest and by now most thoroughly studied population models are those usedto map disease progression through a human population [25, 26, 27℄. These modelstypially divide a population into lasses that re�et the epidemiologial status of in-dividuals (e.g. suseptible, exposed, infeted, et), who in turn transit between lassesvia mutual ontat at given average rates. In this way the models an apture averagedisease progression by traking the mean number of people who are infeted, who areprone to ath the disease, and who have reovered over time. In addition, these mod-els an be used to identify the role of spei� population harateristis suh as age,variable infetivity, and variable infetious periods [26℄. The division of epidemiologi-al lasses aording to suh harateristis gives rise to more omplex models with soalled heterogeneous mixing.In this paper we apply models similar to those used in epidemiology to the spread ofideas. By the term �idea� we refer generally to any onept that an be transmitted fromperson to person [28, 29, 30, 31℄. It may refer to a tehnology, whih may require e�ortand apprentieship to be learned, but it may also be a more �kle piee of informationsuh as a olloquialism or a piee of news. What is important is that it is possible totell if someone has adopted the idea, understands and remembers it, and is apable ofand/or ative in spreading it to others.Pioneering ontributions to the modeling of soial ontagion proesses, based onepidemiologial models, date bak to 1953 [18℄. Nearly a deade later, models wereapplied to the spread of sienti� ideas [20, 21℄. Around the same time, a stohastimodel for the spread of rumors was proposed and analyzed [19℄. In this later model, alosed population is divided into three �soial� states: ignorant, spreaders, and sti�ers.Transitions from the ignorant state to spreaders may result from ontats between thetwo lasses, whereas enounters between individuals who already know the rumor maylead to its essation. Various reent extensions of this model inlude a general lassof Markov proesses for generating time-dependent evolution [32℄, and studies of thee�ets of soial landsapes on the spread, either through Monte Carlo simulations oversmall-world [33℄ and sale-free [34℄ networks, or by derivation of mean-�eld equations fora population with heterogeneous ignorant and spreader lasses [35℄. Despite this revivalin the modeling of information spread, few of these models have been diretly applied toempirial data. In our opinion, this onstitutes a serious gap in the literature, beauseonly the analysis of real data an ultimately validate model assumptions or point tonovel features of suh a omplex proess. The main objetive of this paper is to bridgethis gap.Beyond obvious qualitative parallels there are also important di�erenes between3



the spread of ideas and diseases. The spread of an idea, unlike a disease, is usually aonsious at on the part of the transmitter and/or the adopter. Some ideas that taketime to mature, suh as those requiring apprentieship or study, require ative e�ort toaquire. There is also no simple automati mehanism � suh as an immune system � bymeans of whih an idea may be leared from an infeted individual. Most importantly,it is usually advantageous to aquire new ideas, whereas this is manifestly not so fordiseases. This leads people to adopt di�erent, often opposite, behaviors when interestedin learning an idea ompared to what they may do during an epidemi outbreak. Thuswe should expet important qualitative and quantitative di�erenes between ideas anddiseases when using epidemiologial models in a soiologial ontext. We explore someof these points below in greater detail, in the ontext of spei� models and data.In spite of these di�erenes, quantifying how ideas spread is very desirable as a meansof testing soiologial hypotheses. For example, we an apply dynamial populationmodels to the spread of an idea to validate statements about how e�etively it istransmitted, the size of the suseptible population, the speed of its spread, as well asits persistene. Estimating the population numbers and rates is useful in onstrainingexplanatory frameworks. It is also useful for studying how ultural environments maya�et adoption, as happens when the same idea is presented to ommunities in di�erentnations, or onversely when di�erent ideas are presented to the same ommunity.We pursue these goals in this paper by applying several generi models of epidemi-ology to the di�usion of a spei� sienti� idea in three di�erent ommunities. Ourtest ase is the spread of Feynman diagrams, sine the late 1940s the prinipal om-putational tool of theoretial high-energy physis, and later also used extensively inother areas of many-body theory suh as atomi physis and ondensed-matter theory.The primary reason to hoose this example is that we have detailed historial informa-tion about the network of ontats, person by person, by means of whih the diagramsspread during the �rst six years after their introdution [36, 37, 38℄.This example of the spread of an idea may not transend automatially to other asesof idea di�usion. Feynman diagrams are primarily a tool for omplex alulation. Assuh their study and assimilation require a period of apprentieship and familiarization.Transmission of the tehnique almost invariably proeeded, in the early years, throughpersonal ontat, from informal teaher to student and among peer groups of users.In later years the idea beame familiar and available in aessible forms so that (inpriniple) it ould more easily have been learned from books and leture notes. Thus,although our example will learly not over every lass of ideas it will point, we believe,to features of epidemi models that apply to idea di�usion. It will also reveal featuresof these models that require modi�ation, thereby produing more realisti andidatemodels that we expet will prove useful beyond our present analysis.In Setion 2 we give some historial bakground on the spread of Feynman diagramsin the United States, Japan, and the Soviet Union. We disuss our data soures and theorganization of the datasets. Setion 3 presents several lasses of models of epidemi-ology (or diretly inspired by them), some of their mathematial properties, and theirumstanes under whih we expet them to apply to the spread of ideas. We applyeah model to the historial data in Setion 4, and disuss the estimated values forthe model parameters in the light of our independent knowledge of how the diagramsspread. Finally in Setion 5 we present our onlusions and give some outlook on thegeneral population modeling of the spread of ideas. Appendix A ontains details about4



our parameter estimation proedure.2 Data soures, time series reonstrution, andstate determinationFeynman diagrams oupy a entral role in modern theoretial physis. Realisti mod-els of high-energy physis, as well as in ondensed-matter, atomi, and nulear physisannot be solved exatly to generate preditions that an be onfronted with experi-ments. In speial irumstanes, however, suh as when interations are weak, seriesexpansions in a small parameter permit very good systemati approximations.In models of partile physis, suh as the relativisti quantum theory of eletro-magnetism � quantum eletrodynamis � most terms of this series beyond zeroth order(tree level) are formally in�nite. The proedure of removing unphysial in�nities togenerate preditions is alled �renormalization.� It is vital for renormalization to workthat ommensurate terms be grouped together. This is a relatively simple proedure forthe lowest orders in the expansion series but beomes absolutely onfounding at higherorders, in whih many terms ontribute and in�nities must anel preisely betweenthem. For example, in quantum eletrodynamis, seond-order alulations (involvingthe �rst non-trivial orretions within the perturbative expansion) typially involve tenor so distint terms to be delimited, alulated, and added together, while eighth-orderalulations involve nearly one thousand suh terms. Both hallenges to making al-ulations in quantum eletrodynamis � the presene of in�nities and the aountingdi�ulties of perturbative alulations � were well known to physiists during the 1930s,and the problems remained unsolved after World War II. Throughout 1947 and 1948several approahes to rendering quantum eletrodynamis well-de�ned were being at-tempted in the USA and Japan, but it remained unlear if any renormalization programould sueed systematially [40℄.It was then that Freeman Dyson, following up on an idea by Rihard Feynman, wasable to show how a diagrammati representation of partile interations ould be usedto organize the series expansion. Using the diagrams, Dyson further demonstrated thatthe in�nities ould be systematially identi�ed and anelled to any perturbative order.This oneptual breakthrough uni�ed Feynman's approah (then at Cornell University)with that of Julian Shwinger (at Harvard University) and Sin-Itiro Tomonaga (at TokyoEduation University). For their ontributions Feynman, Shwinger, and Tomonagawere awarded the Nobel Prize in 1965 [40℄. Feynman diagrams opened the �oodgatesfor omputation (and predition) in quantum eletrodynamis and beyond, reatingenormous researh opportunities for a new generation of theoretial physiists. Testsof quantum eletrodynamis and later quantum �eld theories of the weak and strongnulear interations ontinue today in multibillion-dollar partile aelerators at CERNand Fermilab, as well as at smaller installations. These quantum �eld theories takentogether onstitute the �standard model of partile physis,� whih summarizes ourmost fundamental (and most exat) understanding of matter and radiation to date.Almost all quantitative preditions of the standard model, on whih modern partilephysis and osmology are based, are omputed using series of Feynman diagrams.Beause of their extraordinary importane in enabling a good part of modern the-oretial physis, the advent of quantum eletrodynamis and of Feynman diagrams in5



partiular has been very well doumented. Our data was olleted in large part fora new book by one of the authors [36℄. For the United States and Britain one of us(Kaiser) reonstruted the network of ontats � author by author � for the spread ofthe diagrams during the �rst six years after their introdution, between 1949 and 1954.For this he relied upon unpublished orrespondene, preprints, leture notes, and publi-ations from the period, along with more reent interviews and published reolletions.With the aid of two olleagues, he used similar materials to study how the diagramsspread to young physiists in Japan and the Soviet Union. Although less information isreadily available about these ommunities of physiists, a reasonably omplete pitureof ontats and spread an also be inferred [36, 37℄.Data for the number of authors adopting Feynman diagrams were olleted for the�rst six years in the USA and Japan, from the beginning of 1949 to the end of 1954. Forthe Soviet Union, where the diagrams were introdued later and where the spread wasinitially slower, we assembled data for the �rst eight years, from the beginning of 1952 tothe end of 1959. We identi�ed adopters of the idea (or members of the �infeted� lass)based on published uses of (or disussion of) Feynman diagrams in the main physisresearh journals of eah ountry: Physial Review in the USA, Progress in TheoretialPhysis in Japan, and Zhurnal Eksperimental'noi i Teoretiheskoi Fiziki (Journal of Ex-perimental and Theoretial Physis) in the USSR. The data were identi�ed by manualpage-by-page ounts. We found this to be neessary beause no itation searh or evenkeyword searh would su�e. Often in the early years authors would ite the Feynmanand/or Dyson papers without making any use of the atual diagrammati tehniques,and, onversely, by the early 1950s many would use the diagrams without neessarilyiting the Feynman or Dyson papers. Given the quasi-exponential nature of the adop-tion proess these identi�ation methods beome impratial for longer times. This isthe prinipal reason why we have not extended the study to later years. Additionally wehave detailed histori aounts of the spreading proess spanning these initial periodsonly [36, 37℄. Suh knowledge will allow us to build models below that re�et funda-mental soial dynamis, di�erent qualitatively from those underlying standard modelsof epidemis.The identi�ation of adopters with published authors an learly lead to under-estimation. Similarly the identi�ation of national ommunities with spei� journalpubliation is imperfet, although we �nd almost no ross-national publiations, apartfrom a few British authors who were in ative ontat with developments in the USAand published in the Physial Review. As suh they are ounted as part of the diagram-using ommunity in the USA. With these hoies the evolution of umulative numbersof Feynman-diagram authors is shown in Fig. 1.We see that none of the data sets shows saturation in the growth of the adoptionof Feynman diagrams. There are good reasons for this, spanning the initial periodovered by the data, shown in Fig. 1, and beyond. The physis graduate studentenrollment grew rapidly in the US after World War II, faster than any other �eld, andwas growing espeially quikly during the late 1940s when Feynman diagrams wereintrodued [39℄. This growth persisted until the late sixties, with an average doublingtime of 6.24 years. Among all sub�elds of physis partile and nulear physis, wherethe diagrams �rst spread, grew the fastest. The numbers of new physis grad studentsin the USSR also inreased exponentially, at a rate omparable to that in the US duringthe postwar period, but quantitative estimates are more unertain. In Japan, we know6



that membership in the new Elementary Partile Theory Group (whih onsisted largelyof interested grad students and postdos) grew rapidly during this period [36℄. Moreoverduring the mid and late 1950s, the range of appliations to whih physiists appliedFeynman diagrams widened onsiderably. No longer the provine for nulear and high-energy physiists alone, many people began to apply the diagrams for problems in solid-state physis and beyond. This led to another surge in growth of diagram adopters, asnew ohorts enountered the diagrams aross a growing number of sub-�elds of physis.Compounding this growth, a new generation of textbooks appeared that featured thediagrammati tehniques prominently, ensuring even wider adoption within graduatestudents' urriula.Analogies to other population states ommonly used in epidemiologial models arenatural but must be properly quali�ed. The identi�ation of suseptibles is usuallyproblemati both for diseases and ideas. For simpliity one may onsider the entirepopulation that is not infeted (or reovered), but if the spreading proess requiressuh features as diret ontat with those already infeted this may turn out to bea gross overestimate. With the bene�t of hindsight we an see what fration of thepopulation atually beame infeted, but suh estimates an learly underestimate thelass of suseptibles.Finally it is interesting to disuss the reovered state. For some ommuniablediseases suh a state does not exist; as it happens in HIV and tuberulosis, for whihinfeted individuals remain latent for extensively long periods. On the other hand, thereare infetious diseases in whih an individual aquires immunity right after reovery andwill not get re-infeted. This is not true with ideas, a ase in whih ulture is manifestlydi�erent from biology. An idea an reur again and again, whenever it beomes useful,one it beomes part of an individual's repertoire. In many ases (and this is learin our data for several authors), an individual might publish in areas where Feynmandiagrams are used, only to later leave the area for good or to return to it later. Forvery proli� authors, publiation in several areas simultaneously ours frequently.With these aveats in mind we proeed in the next setions to apply epidemi modelsto our data. Model parameters will be estimated on the basis of how well they �t theevolution of adopters. Furthermore, the results of these estimates will be subjetedto broad bounds imposed by the solutions' plausibility, given our knowledge of thehistorial fats.3 Population models: drawing parallels betweenepidemis and idea di�usionBelow we shall onentrate on the lassial, simplest epidemiologial models, based on�homogeneous mixing� in whih state variables are only funtions of time. In a reviewof epidemiologial models Hethote [26℄ introdued their ompartmental harateriza-tion (e.g. SIR, SIS, SEIR, et.) within a global analysis of the �eld. Suh surveyalso disusses how more omplex models an be used to asses the impat of populationstruture (age, risk, gender, et.), epidemiologial variability (age of infetion, variableinfetivity, distributed inubation periods, et.), and sale (spatial, temporal, et.) ondisease dynamis and ontrol. Although we have knowledge of some population hara-teristis (e.g. aademi level, institutional loation) in our data set we feel it may not7
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Figure 1: The time evolution of the umulative number of authors using Feynman diagramsin the USA, Japan, and the USSR. The method was �rst disovered in the USA and quiklyspread both there and in Japan. Adoption was partiularly fast in Japan where researhershad already developed similar methods. At the same time, new institutions were developedthroughout Japan after World War II that helped the nation's physiists share informationfrom the international sienti� ommunity that might otherwise have been di�ult to aess.Adoption in the USSR ourred later beause of sienti� isolation from physiists in theWest with the onset of the Cold War, and proeeded more slowly beause of institutionalresistane. For details of these institutional and pedagogial fators, see [36, 37℄.
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Variable De�nition
S Suseptible
E Idea Inubators
I Idea Adopters
Z Skeptis
R Reovered
N Total Population: N = S + E + I + Z + RTable 1: Nomenlature for the state variables of the several population models used todesribe the spread of ideas.apaity. In order to illustrate generi model features we disuss below a few partialimplementations of this general sheme, inluding expliit parameterizations. At theend of this setion we emphasize the role of the basi reprodutive number, R0, as ameasure of e�etiveness of adoption.3.1 Models without inubation: SIR ModelThe lassial epidemi model onsists of three states: suseptibles (S), adopters (orinfeted, I), and reovered (R). In this SIR model, suseptible individuals transitdiretly to the adopter lass through ontat with other adopters, without any delayperiod or inubation. The reovered state onsists of those individuals who no longermanifest the idea. This state allows for the deay of adopters by reovery and thusleads to a regulation of the idea spread. The model is de�ned by the following systemof ordinary di�erential equations (where overdots denote derivatives with respet totime):











































Ṡ = Λ − βS I
N

− µS,

İ = βS I
N

− (γ + µ)I,

Ṙ = γI − µR,

Ṅ = Λ − µN,

(1)
where 1/(γ+µ) is the average time spent manifesting the idea as an adopter (γ denotesthe reovery rate from infetion). The term βSI/N is usually referred to as the standardinidene. The parameter β is the per apita idea adoption rate. It an in turn bethought as the produt between the mean ontat rate per apita and the probabilityof adoption per ontat.As noted above, although reovery is a natural onept in epidemiology (sine or-ganisms naturally may beome immune after exposure and/or infetion), there is nostrit parallel when disussing ideas. Loose analogies are possible, e.g. one one losesinterest in an idea it is usually harder to have an individual express it, whereas noveltymay make it more attrative. Nevertheless there is no systemati ognitive proess,analogous to the immune system, that atively lears out ideas. As suh many ideasare remembered for life. 10



Many ideas may be short-lived, say from years to days, ompared to the lifetime ofthe individual. In this ase, we may onsider a single outbreak by setting Λ = µ = 0.The sign of the right hand side of the seond equation in system (1) then determinesthe spread of the idea and depends on the initial fration of suseptibles, S(t0)/N . Ifthe initial state of the population an be suh that S(t0)/N < γ/β, then the numberof infetives an only derease. This is the basis of immunization ampaigns, wherebymembers of the suseptible lass are turned into members of the immune lass, andhene beome part of R(t0). Thus knowledge of the infetion rate, β, and of thelifetime of the infetion, 1/γ, results in the reommendation for the fration of immune(reovered) neessary for an epidemi not to develop, namely R(t0)/N > 1 − (γ/β).For a very infetious disease or idea (large β) or one with a slow reovery rate (small
γ) almost all of the population must be immune in order to halt the spread.Due to the less lear de�nition of immunity to an idea, the onept of what mayonstitute immunization is also ill-de�ned. Clearly the novelty of an idea and a per-eption of its potential are often its most attrative features. Changing this pereptionthrough eduation (e.g., about the onsequenes of a ertain behavior, ideology, or pra-tie) may lead to an inrease of skeptiism and onsequently greater �immunity� uponexposure. Moreover we should keep in mind that this onept of immunization, justas in standard epidemis but for di�erent reasons, is usually only valid for the lifetimeof an individual. Although some biologial immunity an be passed e.g. from motherto infant, it is usually the ase that young individuals are more suseptible to new dis-eases and ideas alike. In the Feynman diagram ase this is borne out historially: over80 perent of the early adopters of the diagrams in eah ountry were either graduatestudents or postdos when they �rst began using the diagrams; older physiists simplydid not re-tool [36℄.The asymptoti late-time dynamis of model (1) are well known, and will form thebasis for the analyses of more omplex models disussed below. Suppose that Λ > 0 and
µ > 0. For long times, and regardless of the distribution of infetives and suseptibles,reruitment and exits will balane eah other so that limt→∞ N(t) = N∗ = Λ/µ. Thereare up to two di�erent non-negative steady states (�xed points), known in epidemiologyas the disease-free equilibrium with S∗ = N∗ = Λ/µ, I∗ = R∗ = 0, and the endemistate (whenever β/(γ + µ) > 1) with

S∗ =
γ + µ

β
N∗, I∗ =

[

µ

γ + µ
−

µ

β

]

N∗, R∗ =
γ

µ
I∗ =

[

γ

γ + µ
−

γ

β

]

N∗. (2)The eigenvalues around the disease-free state equilibrium are (−µ,−µ, β − (γ + µ)).Thus it is stable provided that β < γ + µ, i.e. if the deay rate (due to exit andreovery) is larger than the idea adoption rate. The instability of the disease-free stateorresponds to stability of the endemi state. The eigenvalues of the linearized systemaround the endemi equlibrium are
− µ, −

βµ ± A

2(γ + µ)
, (3)where A =

√

µ(β2µ − 4β(γ + µ)2 + 4(γ + µ)3). All eigenvalues are negative providedthat β > γ + µ, guaranteeing the loal stability of the endemi state.As a result a transrital bifuration (where the two equilibria exhange stability)takes plae at R0 ≡ β/(γ + µ) = 1. In the mathematial epidemiology literature11



the dimensionless quantity R0 is known as the basi reprodutive number. R0 has anintuitive and useful interpretation as the average number of seondary ases produed bya �typial� infeted individual during his/her entire life as infetious, when introduedin a population of suseptibles (assumed to be at a demographi steady state). We willdisuss the role of R0 further in Subsetion 3.3.3.2 Competition and inubation: SIZ and SEIZ ModelsIn the spread of ideas, but almost never in standard epidemis, the exposure of indi-viduals to an idea almost invariably leads to both enthusiasts and skeptis. In the aseof Feynman diagrams, skeptis did indeed emerge. Julian Shwinger, for example, whodeveloped a non-diagrammati method of renormalization, quipped years later thatFeynman diagrams had �brought omputation to the masses� � hardly a good thing, asfar as Shwinger was onerned. Although his graduate students at Harvard did learnsomething about the diagrams, they made little use of them in their dissertations andearly artiles. J. R. Oppenheimer, too, was initially skeptial, and e�etively blokedDyson's reruitment e�orts at the Institute for Advaned Study in Prineton for severalweeks, before Hans Bethe intereded diretly on Dyson's behalf. In Mosow, meanwhile,the in�uential Lev Landau made his distaste for Feynman diagrams lear during theearly 1950s, bloking any disussion of them in his famous seminar (even hastisingone young graduate student who had expressed interest in the diagrams that it wouldbe �immoral� to hase suh �fashions� as Feynman diagrams!) [36℄. Thus inlusion ofskeptis alongside enthusiasts is quite important. This an be modeled by onsideringtwo ompeting and mutually exlusive infeted states, say I and Z. The simplest suhmodel (SIZ) is given by






















Ṡ = Λ − βS I
N

− bS Z
N

− µS

İ = βS I
N

− µI

Ż = bS Z
N

− µZ,

(4)where b and β denote the per apita rates of idea rejetion and adoption by suseptibles,respetively.The interesting new feature about this type of model is that it an support up tothree �xed points. The �rst is the usual disease-free state S = N∗ = Λ/µ, I = 0, Z = 0(extintion of both adopters and skeptis), and two endemi states, one for eah strand
I, Z:

S = µ
β
N∗, I =

(

1 −
µ
β

)

N∗, Z = 0 (extintion of skeptis) (5)or
S = µ

b
N∗, Z =

(

1 −
µ
b

)

N∗, I = 0 (extintion of adopters). (6)Observe that model (4) does not support the steady state o-existene of adoptersand skeptis. For the disease-free state the eigenvalues are (b − µ, β − µ,−µ). Thusfor stability one needs both b < µ and β < µ. This means that there are two R0's,
RI

0 = β/µ, and RZ
0 = b/µ.Under these irumstanes, whih of the endemi states beomes stable? To in-vestigate this question we inspet the eigenvalues around the I endemi state. This12



gives
− µ,

(

b

β
− 1

)

µ, −β + µ. (7)Similarly we obtain the eigenvalues for the endemi Z state by replaing b with β andvie versa in (7). This result implies that only one of the two endemi states an bestable, depending on the relative magnitude of the ontat rates b and β. We note,however, that beause there is no ontat term between the I and Z, the way one lassends up dominating relies on long-time hanges in the population through yles ofreruitment and exit. This time sale an be very long, diverging in the limit where
b → β. For β > b it will take on average β/(β − b) generations until the disappearaneof skeptis.The model generalizes immediately to an arbitrary number, nZ , of alternative en-demi states, Zi (in whih we inlude the usual I), with assoiated ontat rates bi.There will then be nZ + 1 �xed points, one disease-free and nZ endemi orrespondingto eah strand. As in the SIZ model above only the state with the largest bi will beloally stable. The stability of the �xed point assoiated with Zi for deay in favor ofan alternative state Zj is haraterized by an eigenvalue [(bi/bj)−1]µ. The disease-freeequilibrium will be loally stable if and only if all Ri

0 = bi/bj < 1, ∀
nZ

i=1.As above, onsider the ase in whih reovery an take plae in the SIZ model, andproeeds with rate γI from the I lass, and with rate γZ from the Z lass. RI,Z
0 hangeby the simple modi�ation µ → µ + γI,Z . In the absene of vital dynamis, it thenbeomes a neessary and su�ient ondition for the growth of the strand I, Z that

S(t0)/N > γI,Z/β, respetively. What is interesting now is that the redution of thesuseptibles an be ahieved by having a suitably large fration of the population in theomplementary infetive strand(s). For example, I will not grow if [Z(t0)+R(t0)]/N >
1−(γI/β). This observation quanti�es the fat that in a population with a large frationof skeptis an idea will not take hold. In this sense omplementary strands e�etivelyat like reovery states. This may be the most natural explanation for why old ideasseldom re-surfae, in spite of being preserved for very long times in the population andvarious arhives.One important drawbak of SIR and SIZ models is that one exposed to an infetedperson, a suseptible individual transits immediately to the infeted lass. This featureis often unrealisti, espeially for ideas that require long periods of apprentieship, whihis ommon in sienti� researh and is a signi�ant feature of the Feynman-diagram userdata disussed below. The simplest way of inorporating some delay in an SIZ modelis to introdue a new lass of inubators (or exposed), denoted by E, between thesuseptible and adopter states. Upon ontat with an adopter, a suseptible individualtransits with a given probability to the E lass. This lass has a given harateristilifetime, 1/ǫ, before the individual manifests the idea and transits to the I lass. Thatis, 1/ǫ is the average inubation (or maturation) time of the idea [41℄. It is expetedto be a funtion of personal e�ort on the part of the adopter as well as environment(adverse or supportive). There may also be population losses due to vital dynamis,whih we will ontinue to assume our on a timesale 1/µ. In this sense not all of theexposed population will beome infeted.This extension leads to an SEIZ model. In addition, this model an be enrihedwith extra proesses to generate a better desription of the data. Below we presenta version of the SEIZ model in whih skeptis reruit from the suseptible pool with13



Parameter De�nition
Λ Reruitment rate

1/µ Average lifetime of the idea
1/ǫ Average idea inubation time
1/γ Average reovery time
β Per-apita S-I ontat rate
ρ Per-apita E-I ontat rate
b Per-apita S-Z ontat rate
l S → Z transition probability given ontat with skeptis

1 − l S → E transition probability given ontat with skeptis
p S → I transition probability given ontat with adopters

1 − p S → E transition probability given ontat with adoptersTable 2: Parameter de�nitions used in the several population models of this setion.rate b, but their ation may result either in turning the individual into another skepti(with probability l), or it may have the unintended e�et of sending that person intothe inubator lass (with probability 1 − l). We also introdue a probability, p, thata suseptible individual will beome immediately infeted with the idea upon ontat.Conversely, with probability 1−p that person will transit to the inubator lass instead,from whih the individual may later beome an adopter. Furthermore, the transition ofindividuals from the inubator lass to the adopter lass an be promoted by ontat,with rate ρ. With these hoies the model is given by:










































Ṡ = Λ − βS I
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− bS Z
N

− µS

Ė = (1 − p)βS I
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(8)
As expeted, the system has a disease-free state with S∗ = N, E∗ = I∗ = Z∗ = 0.Analysis of the loal stability of this �xed point (utilizing next generation operator[42, 43℄) reveals that the basi reprodutive numbers are given by

RI,Z
0 =

(

β(ǫ + pµ)

µ(ǫ + µ)
,
l b

µ

)

. (9)As in the SIZ model the �rst number, RI
0, is the one of interest, as it orresponds to aneigenvetor with a omponent of adopters. The seond value, RZ

0 , orresponds to theexlusive growth of a population of skeptis, without aeptane of the idea.3.3 Speed of idea propagation and e�etiveness of adoptionFrom the disussion of the models above we an de�ne several important intuitivequantities that haraterize the spread of ideas. For example, a simple measure of the14



Model SIR SEI SEIZ
RI

0
β

γ+µ

βǫ

µ(µ+ǫ)
β(ǫ+pµ)
µ(ǫ+µ)Table 3: Basi reprodutive number RI

0 for the SIR, SEI, and SEIZ models disussed insetion 3.speed of propagation of the idea is the number of new adopters per unit time. This issimply given by İ.For simple models, suh as the ones disussed above, in whih there is only onegrowing eigenvalue λ+ for eah infetive strand, the initial veloity of the spread issimply
vini ≡ İ(t0) ≃ λ+I(t0). (10)The quantity vini gives a measure of how fast the idea will initially spread but not ofits overall adoption e�etiveness. In order to determine the latter we must onsiderthe number of new adoptions that a spreader of the idea an lead to during his/herlifetime. Sine there is no a priori good reason to suspet that ideas are short-lived,the e�etiveness of an idea may result from slow spread over long periods of time andthus may not be well haraterized by vini.The number of seondary adoptions indued by a typial idea spreader in a popu-lation of suseptibles over that person's lifetime as an adopter, tidea, is alled the basireprodutive number, R0, in eology and epidemiology (see [3, 5, 26℄). As suh R0 isthe invasion riterion for adopters in a population of suseptibles, or analogously theaverage branhing ratio (the number of o�spring) of the typial adopter over his/herlifetime in this state. If R0 = I(tidea)/I(t0) > 1 then the idea will spread. The greater

R0 the more e�etive the idea adoption will be.In pratie R0 an be omputed in simple models through the linearization of İ(t)around the disease-free equilibrium. These expressions are summarized in Table 3. Forthe omputation of R0 in models with heterogeneous populations other methods areneessary [5, 42, 43℄. In the next setion we will estimate the statistial distributions for
R0 subjet to �tting the data for the spread of Feynman diagrams in the USA, Japan,and the USSR. The mean of this distribution provides a measure of the e�etiveness ofthe adoption of Feynman diagrams in the three ountries.4 Results and disussionWe now analyze the results of estimating parameters by mathing the data on thespread of Feynman diagrams for three distint ountries to several population modelsdisussed above. These models allow us to disuss the e�ets of the reovered lass, oflateny, and of ompetitive idea strands. They also explore several lasses of transitionmehanisms, both by progression and by ontat between population lasses.Table 4 summarizes the results. To gauge the appliability of eah model to eahdata set we used the simplest measure of goodness of �t, by omputing the absolute15



model USA Japan USSRSIR 2.816 1.788 1.487SEI 1.963 1.638 1.437SEIZ 1.467 1.568 1.437Table 4: The smallest (absolute value) average deviation per data point between the best�t parameters of eah model and data on the number of Feynman diagram adopters for theUSA, Japan, and the USSR.parameter baseline range unit
S(t0) [0,500℄ people
E(t0) [0,100℄ people
I(t0) [0,20℄ people
R(t0) [0,10℄ people
Z(t0) [0,100℄ people

ǫ [0.2,6℄ 1/year
β [0,12℄ 1/year
b [0,12℄ 1/year
l [0,1℄ 1
γ [0,12℄ 1/year
Λ [0,50℄ people/year
µ [0.025,12℄ 1/year
p [0,1℄ 1
ρ [0,12℄ 1/yearTable 5: Parameters used in the SIR, SEI and SEIZ population models, their allowed rangesin our estimation proedure and units.value of the deviation between model predition and data. Average deviations per datapoint are shown in Table 4. Details of our ensemble estimation proedure are given inAppendix A.Here we note simply that parameter estimation must, by pratial neessity, beon�ned to given numerial ranges, with upper and lower bounds ditated by generalempirial onsiderations. Our hoies of estimation intervals are shown in Table 5.This proedure is familiar from epidemiology, where knowledge about suh quantitiesas the length of inubation and infetious periods is often used to restrit various modelparameters to plausible values (see [44℄; [8℄ also employs assumptions of this nature inimmunology).4.1 Results for models without inubation: SIRWe start by presenting our results for simple models without inubation. Parameterestimates are given in Table 6 for the USA, Japan, and the USSR, while the modelsolutions are ompared to the data in Fig. 3.16
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Figure 3: The best �t trajetory (see table 6) for the rise of Feynman diagram adoptionobtained for the SIR model vs. the data for the USA, Japan, and the USSR.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 2  4  6  8  10  12  14  16  18  20

P
ro

ba
bi

lit
y

R0Figure 4: The probability distribution of the basi reprodutive number R0 estimated fromthe SIR model for the USA data on the spread of Feynman diagrams. R0 measures thee�etiveness of the idea adoption. Its value estimates the average number of adopters induedby a typial spreader in a population of suseptibles.17



USAparameter best-�t mean std
S(t0) 114.092 96.463 76.726
I(t0) 11.948 10.982 0.542
R(t0) 0.830 0.550 0.432

β 0.534 0.663 0.052
γ 8.542 × 10−3 0.049 0.034
Λ 40.417 42.864 5.130
µ 0.036 0.058 0.023
R0 12.029 6.752 2.008

Japanparameter best-�t mean std
S(t0) 33.901 24.534 3.537
I(t0) 4.018 3.799 0.348
R(t0) 1.925 0.864 0.714

β 1.990 2.255 0.131
γ 8.668 × 10−3 0.054 0.034
Λ 12.466 20.759 2.646
µ 0.031 0.087 0.037
R0 49.582 16.922 4.308USSRparameter best-�t mean std

S(t0) 1.347 1.156 1.088
I(t0) 1.935 1.583 0.218
R(t0) 9.742 4.928 2.415

β 1.251 1.258 0.045
γ 0.030 0.092 0.062
Λ 32.822 32.031 6.894
µ 0.188 0.134 0.063
R0 5.739 6.053 1.963Table 6: Parameter estimation (SIR model) for the spread of Feynman diagrams in the USA,Japan, and the USSR. The three olumns show our best-�t estimate, the mean omputedover an ensemble of parameter set realizations, and orresponding standard deviation (std).
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The estimates for the initial population paint a piture of a onsiderably largersienti� ommunity suseptible to learn Feynman diagrams in the USA than in theother two ountries. In Japan, S(t0) appears more than three times smaller than inthe USA, while in the Soviet Union our estimates indiate a very small number ofsuseptibles around 1952. Nevertheless both the USA and the USSR show strong levelsof reruitment (slightly higher Λ in the USA), as ompared to Japan.This makes sense given eah ommunity's rates of growth during this time period. Inthe postwar United States, the rate at whih new Ph.D.s in physis were granted grewby nearly twie that of any other �eld between 1945 and 1951, quikly exeeding (by afator of three) the prewar rate at whih new physiists had been trained. Meanwhile,building on the wartime Manhattan Projet pattern, the federal government pumpedmoney into physis at more than ten times the prewar levels. Most singled out forsupport during the early postwar period was high-energy physis, preisely that branhof the disipline in whih Feynman diagrams were �rst developed and from whih theearliest adopters ame [39℄. These fators led to a large population of suseptibles whenFeynman and Dyson �rst introdued Feynman diagrams.Japan, on the other hand, had a strong tradition of high-energy physis beforethe war, but massive shortages of funding and basi supplies during the early postwaryears hampered the growth of that ountry's physis ommunity (lower Λ). Althoughabsolute numbers of new physiists in Japan did not grow at anything like the pae inthe United States after World War II, several institutional hanges were introdued inJapan right around the time that Feynman diagrams were invented, greatly failitatingthe diagrams' spread throughout Japan. This fat is re�eted in the highest adoptionrate, β, for Japan, ompared to the other two ountries. This in turn leads both to thefastest speed of adoption and the highest value of R0.Contats between Japanese and Amerian physiists began again in 1948 (whileJapan was still under U.S. oupation), inluding visits by several Japanese theoretialphysiists to the Institute for Advaned Study in Prineton, New Jersey, where Free-man Dyson was honing the new diagrammati tehniques. A new organization in Japan,known as the Elementary Partile Theory Group, was also founded in 1948, and beganto publish its own informal newsletter and preprint organ, Soryushi-ron Kenkyu, whihhelped to spread news of the new diagrammati tehniques. And �nally the Japaneseuniversity system quikly expanded tenfold, beginning in 1949, allowing young physi-ists to establish new groups and visit new institutions throughout the ountry, puttingthe new tehniques into rapid irulation [36, 37℄.The Soviet Union was the only ountry in the world after World War II in whihthe growth in the numbers of new physiists and in government spending on physiswas omparable with the United States. This may explain why our estimates of thereruitment rates Λ are so high and ommensurate for the two nations. But the onsetof the Cold War in the late 1940s e�etively ended all informal ommuniation betweenphysiists in the USA and USSR just months before Feynman and Dyson introduedFeynman diagrams.These geopolitial onstraints severely limited the exhange of information for sev-eral years and explain why Feynman diagrams took hold in the Soviet Union only laterand at a slower initial pae (smallest vini). Only with the �Atoms for Peae� initiatives,starting in 1955, did physiists from both ountries begin to meet informally for ex-tended visits. And only after these lengthy fae-to-fae �exposures� did Soviet physiists19



begin to adopt Feynman diagrams at a omparable rate to those in the USA and Japan[36, 37℄. Over time the e�etiveness of adoption, R0, was nevertheless omparablebetween the USSR and the USA.Finally we notie that both the exit and reovery rates, µ and γ, are small in everyase, their sum being omparable to a areer lifetime (5-25 years). The fat that γ isestimated to be smaller that µ is a onsequene of our imposed lower bound on theexit rate and the fat that the data only onstrains their sum. Although this estimateannot be made with good on�dene for data whih only overs the �rst six years, itis an indiation that ideas are not naturally forgotten.Inidentally, we do know in some ases that the time to hange researh subjetwas muh shorter for a few prominent authors. Rihard Feynman was working almostexlusively on his theory of super�uidity by 1953 (although some of his students ontin-ued to use the diagrams under his supervision), while Freeman Dyson was persuaded tohange researh diretion, to ondensed-matter theory, at a meeting with Enrio Fermialso in 1953. (See Dyson's testimony in [45℄; see also [36℄.)The long exit and reovery times, ombined with �nite, plausible values of theontat rate β, lead in turn to large values of R0. The fat that an infeted individual,when introdued in a population of suseptibles, an lead to many adopters (here 6-50)is assoiated not with high adoption rate for the idea, β, but rather with a long time(many years) over whih the idea an be transmitted, 1/(γ + µ). This is a feature thatwe will see repeated in more omplex models and that is manifestly di�erent betweenbiologial infetion and the spread of ideas.4.2 Results for models with Inubation: SEIWe now analyze the e�ets of inluding lateny in the models. In the simplest SEImodel, suseptibles transit to an intermediate lass of inubators (E) upon ontatwith adopters, in whih they remain for a harateristi �inubation� time 1/ǫ, afterwhih they manifest the idea. Note that due to exit proesses the average time spent inthe inubator lass is atually 1/(ǫ + µ), and that some individuals exit the populationand never manifest the idea. In pratie µ will be estimated to be small and the timespent in the inubators lass is indeed essentially the inubation time. The simplestSEI model is a subset of the SEIZ model of eq. (8), and is given by






















Ṡ = Λ − βS I
N

− µS

Ė = βS I
N

− ǫE − µE

İ = ǫE − µI.

(11)Results of the parameter estimates are presented in Table 7.The most important qualitative di�erene, relative to models without lateny, isthat the model an now better �t data at early times for the USA and Japan (seeFig. 5). This aounts for the bulk of the improvements in Table 4. In both asesthis is made possible in the SEI model beause starting with a number of individualsin the inubator lass allows a two-stage growth proess for the adopters. Initiallythe inubators are depleted, allowing for a growth of adopters with a negative seondderivative. This is the main feature of SEI solutions, aounting for their better �t of20



USAparameter best-�t mean std
S(t0) 478.515 398.691 61.990
E(t0) 60.989 44.686 4.728
I(t0) 0.020 0.160 0.135

ǫ 0.257 0.391 0.055
β 1.041 0.951 0.086
µ 0.025 0.040 0.012
Λ 45.385 40.052 6.467
R0 37.711 23.172 5.798

Japanparameter best-�t mean std
S(t0) 30.248 31.037 2.190
E(t0) 11.569 12.022 1.400
I(t0) 0.153 0.165 0.129

ǫ 2.361 2.009 0.279
β 5.956 4.417 0.787
µ 0.039 0.044 0.013
Λ 12.067 12.578 1.093
R0 150.136 105.372 35.223USSRparameter best-�t mean std

S(t0) 3.074 0.810 0.722
E(t0) 3.344 3.462 0.647
I(t0) 0.682 0.738 0.266

ǫ 1.713 1.613 0.476
β 3.715 3.589 0.753
µ 0.067 0.075 0.035
Λ 17.819 19.372 3.668
R0 53.257 55.892 28.788Table 7: Parameter estimations for the SEI model for the adoption of Feynman diagrams inthe USA, Japan, and the USSR.
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Figure 5: Best �t trajetories orresponding to the parameter estimations for the SEI model,for the USA, Japan, and the USSR. The SEI model �ts the data better at early times,espeially for the USA, when ompared to the SIR model.the data relative to the SIR model. The two-stage proess is a property of the growthurve for adopters in the USA from the initial time until early 1950, and to a lesserextent for Japan over the same period, after a slightly later start. The harateristitime at whih the urve hanges onavity an be omputed from the initial growth as
t∗ ≃

1

ǫ
ln

[

E(t0)

E(t0) + I(t0)

(

1 +
ǫ + µ

β

N(t0)

S(t0)

)]

. (12)This time is longest for the USA, on the order of 10 months, shortest for Japan at2.3 months, and about 5 months for the USSR, re�eting the relative values of theparameters ǫ and β estimated for the three ountries. Beyond this point in time thee�et of the inubator lass is relatively negligible. For Japan and the USSR, where
ǫ is largest, the lass beomes essentially non-dynamial beyond the initial transient,with E → βSI/(Nǫ), and as a onsequene the solutions look muh like those of theSIR model.In pratie the inubation periods estimated for the three ountries are quite dif-ferent. For the USA (see Fig. 6), the best �t solutions prefer to start in 1949 with arelatively large number of inubators and an inubation time of order 3-4 years. Inboth Japan and the Soviet Union the initial population inluded fewer inubators buthad a onsiderably shorter inubation time, of the order of 5-6 months in Japan and7-8 months in the USSR. These inubation period estimates for Japan and the SovietUnion are unexpetedly short, sine most of the papers were authored by graduatestudents who took on average a few years of training (�inubation�) before publishing.The small values for ǫ thus reveal some limits of the simple SEI model: in partiular,simple progression to adoption (parameterized by ǫ) does not apture the dynamis22



 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 1  1.5  2  2.5  3  3.5  4  4.5  5

P
ro

ba
bi

lit
y

Mean Incubation Time [years]Figure 6: Histogram of the mean inubation time 1/ǫ for Feynman diagrams in the USA,estimated by �tting the SEI model to data, see table 7.adequately, sine (as we know historially) the role of multiple ontats was important.We return to this issue below.Beyond the role played by the inubator lass, we observed the same relative hier-arhy of several important quantities among the di�erent national ommunities. Japanhad the largest e�etiveness of adoption, R0, whereas both the USA and the USSRdisplayed smaller and statistially ommensurate values for R0. (Data were only ol-leted for the USA and Japan for the period 1949-54, beause the steep rate of growthmade longer olletion times infeasible. The slow rise of diagram adoption in the USSR,on the other hand, enouraged us to ollet data for a longer period, 1949-59, makingdiret omparisons between late-time behavior in the USA and the USSR di�ult.) Inevery ase the large values of R0 are essentially due to a long lifetime of the idea, 1/µ,of 13-40 years. The reruitment rates, Λ, similarly to the SIR estimates, are highestfor the USA, followed by the USSR, re�eting these national e�orts to inrease thenumbers of new physiists.In spite of all these qualitative similarities one should also keep in mind that thenumerial values for eah of these parameters are generally di�erent between the SIRand SEI models, and not always statistially ompatible. Thus preferene of one modelover another an be determined via onsideration of the goodness of �t (Table 4), butshould also take into onsideration qualitative knowledge of the proesses at play.
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Figure 7: The best �t solutions of the SEIZ model (see Table 8) vs. the data for the USA,Japan, and the USSR.4.3 Results for models with Inubation and Competition:SEIZFinally we onsider the most omplex model of our set, whih inludes an additionallass Z muh like that of adopters, but whih ompetes with I for suseptibles. Resultsof the parameter estimation proedure are given in Table 8 and in Fig. 7.It is lear both from Table 4 and from Fig. 7 that the SEIZ model gives the best�ts to data, partiularly in the ase of the USA.We observed that good solutions (with very similar smallest deviation per point) arepossible with either idea strand I or Z having the largest R0. In this sense our initial sixyears of data annot determine whih idea strand, adopters or skeptis, will eventuallywin out over many generation times. In the parameter estimates presented in Table 8we have restrited the solutions to have RI
0 > RZ

0 , thus limiting the searh spaeto the historially santioned eventual domination of Feynman diagrams over othertehniques. This does not prelude the skeptis from growing initially in a populationof suseptibles, and we �nd in fat that degenerate solutions with and without a growingnumber of skeptis are possible.A novelty of the SEIZ model relative to the SEI is that the progression to adoptionan result from multiple ontats, both while suseptible (parameterized by β) and whileinubating (parameterized by ρ). For every ountry the fat that p is small and ρ sizablemakes adoption favored and faster through ontat with adopters while inubating,relative to simple progression as in the SEI model. This may indeed be the ase inreality sine the learning of Feynman diagrams in the early years was haraterizedby extensive interpersonal ontats at several stages of physiists' apprentieship. Weknow of only one ase in all three ountries in whih a few physiists learned about the24



USAparameter best-�t mean std
S(t0) 98.973 108.662 5.852
E(t0) 24.515 24.984 0.447
I(t0) 5.916 × 10−5 0.031 0.027
Z(t0) 0.114 0.160 0.119

ǫ 0.202 0.210 0.009
β 0.488 0.496 0.012
b 0.164 0.156 0.117
l 0.311 0.252 0.171
µ 0.025 0.032 0.006
p 0.570 0.566 0.052
ρ 11.893 11.549 0.330
Λ 49.527 47.860 1.555
RI

0 18.412 14.975 2.227

Japanparameter best-�t mean std
S(t0) 24.806 24.798 1.356
E(t0) 16.123 15.292 0.781
I(t0) 1.35 × 10−3 0.092 0.076
Z(t0) 0.333 0.517 0.452

ǫ 0.995 0.976 0.077
β 2.365 2.341 0.115
b 0.077 0.378 0.351
l 0.365 0.406 0.227
µ 0.031 0.036 0.009
p 0.007 0.068 0.051
ρ 3.897 4.008 0.461
Λ 11.553 12.033 0.634
RI

0 74.821 65.245 13.808USSRparameter best-�t mean std
S(t0) 1.064 0.957 0.609
E(t0) 4.129 2.660 0.481
I(t0) 0.954 0.980 0.151
Z(t0) 1.176 1.162 0.522

ǫ 0.230 0.482 0.145
β 1.818 1.731 0.102
b 0.0112 0.267 0.187
l 0.730 0.649 0.247
µ 0.075 0.070 0.023
p 0.097 0.104 0.071
ρ 3.340 3.341 0.506
Λ 18.134 18.288 1.785
RI

0 18.806 25.055 10.614Table 8: Parameter estimations for the SEIZ model and data for the spread of Feynmandiagrams for the USA, Japan, and the USSR. We restrited the estimation proedure to theregime where RI
0 > RZ

0 , see Eq. (9).
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R0Figure 8: The probability distribution of the basi reprodutive number RI
0 estimated fromthe SEIZ model for the Japan data on the spread of Feynman diagrams. The Japanese e�e-tiveness of adoption is onsistently greater than that for the other two ountries, regardlessof the spei� model onsidered.diagrams su�iently well from artiles or textbooks alone. Pratially every adopter inall three ountries is known to have interated repeatedly with other adopters beforeusing the diagrams in their researh [36℄.We also observe that for the SEIZ model the relative magnitudes of the reruitmentrates for the USA, USSR, and Japan follow the trends observed in simpler models,while the same is approximately true also for the e�etiveness of adoption, R0. Theestimated probability distribution funtion for RI

0 for Japan in the SEIZ model is shownin Fig. 8. As with the previous model, the large values of RI
0 estimated in the SEIZmodel are mainly due to the very long lifetime of the idea.Among the models disussed above we are therefore inlined to prefer the SEIZmodel. Not only does it best �t the empirial data, but it also inludes e�ets thatwe know to have been important, suh as lateny (apprentieship), adoption throughmultiple ontats, and institutional and intelletual resistane. Estimated parameters,both in their orders of magnitude and (more important) in their relative sizes, re�etproperties of the idea's spread in eah national ommunity that math qualitative ex-petations based on our empirial knowledge of the proess.5 ConlusionsIn this paper we applied several population models, inspired by epidemiology, to thespread of a sienti� idea, Feynman diagrams, in three di�erent ommunities under-going very di�erent soial transformations during the middle years of the twentieth26



entury. There is always a tradeo� between the use of models that inlude more detail(heterogeneous populations) and highly aggregate simple models with a manageablenumber of parameters. Although, a model built under very simplisti assumptions isexpeted to have deep limitations, the use of simple epidemi-type models have hadtremendous suess in the reent past, partly due to their ability to use existing datato make preditions (treatment for HIV [8℄) or reommendations (ontrol measures forSARS [44℄). This is the thinking behind the model hoies made above. Moreover giventhe relative sparsity of quantitative data on soial dynamial proesses at present suhmodels may well prove to be the most useful starting points for modeling.We have found that suitably adapted epidemi models do a good job of �tting theempirial data, provided we allow their parameters to be very di�erent from those nor-mally estimated for standard epidemis. In this sense the spread of Feynman diagramsappears analogous to a very slowly spreading disease, with harateristi progressiontimes of years instead of days or weeks. The spread of the diagrams also shows anenormous e�etiveness of adoption due primarily to the very long lifetime of the idea,rather than to abnormally high ontat rates.The models give a quanti�ation of parameters that are harateristi both of theidea and of the mixing population in whih it spreads. This allows a more preise dis-ussion of the soiologial reasons why the idea evolved di�erently in distint nationalommunities. The initial veloity of spread of Feynman diagrams was fastest in Japan,followed by the USA, and slowest in the USSR, probably as a result of geopolitial on-straints that severely limited aess to the idea and its pratitioners. The e�etivenessof the adoption, enapsulated by R0, was onsistently largest for Japan, most likelyre�eting the high level of organization of its sienti� ommunity in the di�ult timesthat followed the end of World War II. To our knowledge this is the �rst time thatbasi reprodutive number distributions have been estimated for the spread of an idea.The USA and the USSR also show high reruitment rates, following the two ountries'massive investment in nulear and high-energy physis during the early Cold War. Inthis study we have done what seems to be yet unommon in epidemiology, namely theestimation not only of model parameters and their variability, but also of the e�etivepopulation sizes of the ommunities involved.In the proess of onstruting epidemiologial-type models and estimating theirparameters for the spread of Feynman diagrams, we had to onfront several oneptualissues onerning why the spread of ideas is or is not analogous to that of a disease.One interesting aspet of the spread of ideas is the inadequay (or irrelevane) of thereovered state. In fat many ideas may never be forgotten at all, as that would be inthe worst interest of the adopter. As a result our parameter estimates onsistently �ndvery long reovery times, 1/γ. The same holds for the exit rates, 1/µ.In spite of these slow rates of exit and reovery, individuals ommonly have toaquire many ideas, and these may in some ases be mutually exlusive, or at least mayadversely a�et the adoption of others. We introdued a new lass of simple models withmultiple Z lasses representing these strands. It is a urious, and we believe importantfat that the reruitment of individuals from a lass of suseptibles to other ideas hasthe same mathematial e�et as vaination against disease. In this sense �immunity�to an idea may be obtained either by eduation about its possible impliations (perhapsanalogous to atual immunization), or by distration with other, more easily aquiredonepts embodied by the Z lasses. 27



We must emphasize that the behavior of individuals when exposed to ideas may bevery di�erent, indeed opposite, to what they may do during an epidemi outbreak. First,people intentionally seek ways to extend the infetious period of an idea, usually byreording it and storing it in various douments. In this sense the lifetime of an idea anlargely transend that of individuals. Seond, short of vaination the most e�etivestrategy to stop a disease epidemi is through isolation, whih redues the ontatrate. Ideas, unlike diseases, are usually bene�ial and thus people's behavior tends tomaximize e�etive ontats. This pattern an be aptured through the mapping ofthe soial network of ontats that underlie the spread of the idea, whih we analyzeelsewhere [38℄. There we show that the ommunities where Feynman diagrams spreadthe fastest had reated intentional soial and behavioral strutures that ensured verye�ient ommuniation of sienti� knowledge.We �nish by remarking that the SEIZ model, whih inluded both skepti andinubator lasses, as well as aeleration to adoption from inubation (parameterizedby ρ), aptures most adequately the role of suh lasses in the transmission proess,sine it yields the best �ts (smallest average deviations in Table 4). Nevertheless themodeling of the spread of ideas disussed above is but a simple ariature of the omplexsoial dynamial proesses involved. Our hope is that this work may bring a new andhopefully useful quantitative perspetive into the study of the di�usion of ideas, by thesimplest means possible.AknowledgementsWe thank Gerardo Chowell, Ed MaKerrow, Miriam Nuño and Steve Tennenbaum,for disussions and omments. A. Cintrón-Arias aknowledges �nanial support fromMathematial and Theoretial Biology Institute and Center for Nonlinear Studies at LosAlamos National Laboratory. Collaboration was greatly failitated through visits byseveral of the authors to the Statistial and Applied Mathematial Sienes Institute(SAMSI), Researh Triangle Park, NC, whih is funded by NSF under grant DMS-011209. The authors thank the hospitality of Santa Fe Institute, where portions of thiswork were undertaken.Referenes[1℄ R. M. May, in Theoretial Eology: Priniples and Appliations, 2nd edn, editedby R.M. May (Sinauer, Sunderland, 1981).[2℄ P. Yodzis, Introdution to Theoretial Eology (Harper & Row Publishers, NewYork, 1989).[3℄ H. Thieme, Mathematis in Population Biology (Prineton University Press, Prine-ton, 2003).[4℄ R. Anderson and R. May, Infetious Diseases of Humans: Dynamis and Control(Oxford University Press, Oxford, 1991).[5℄ O. Diekmann and J. A. P. Heesterbeek, Mathematial Epidemiology of InfetiousDiseases: Model Building, Analysis and Interpretation (Wiley, New York, 2000).28
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As a starting point we take the fat that simple population models annot be ex-peted to give perfet desriptions of the data, resulting in a minimum level of disrep-any. We hose to parameterize this disrepany by a olletive measure of the averageabsolute value of the deviation between the best model predition and eah data point.This measure allows us to disuss and ompare how good models are at desribing aspei� data set. Our results are given in Table 4.Seond, we expet in general that data ontains errors, e.g. early underestimation,false positives, aounting errors. Thus a given level of unertainty in the data willtranslate into parameter statistial distributions that are ompatible with those allow-able deviations. This is a stohasti optimization problem (see, e.g., [46℄ for a generaldisussion). Based on this idea we perform an estimation of the joint parameter distri-bution of model parameters, onditional on a set of allowable deviations at eah datum.To be spei� we an write that the unknown exat data point IE(ti), measured at time
t = ti, an be written in terms of the observed datum IO(ti) and an error ξ(ti) as

IE(ti) = IO(ti) + ξ(ti). (13)The error ξ(ti) is only known statistially. In order to proeed we must speify a modelfor ξ. Here we assumed a simple Gaussian distribution suh that
P [ξ(ti)] = P

[

IE(ti) − IO(ti)
]

= N e
−

ξ2(ti)

2σ2(ti) , (14)where N is the normalization fator and σ(ti) parameterizes the expeted error at time
t = ti.This expetation for the errors an be translated into a ommensurate �tness fun-tion (analogous to a Hamiltonian in statistial physis) that an in turn be minimizedin order to produe parameter estimates through a searh proedure. For eah modelrealization (in terms of a set of parameters S = (S(t = t0), E(t = t0), ..., β, γ, ...)) wetake this funtion to be

H(S) =
∑

i

[

IM (ti) − IO(ti)
]2

2σ2(ti)
, (15)whih is an impliit funtion of S. If the model ould generate exat results we ouldthen make the natural assoiation IE(ti) → IM (ti). This is usually not the ase, sinea residual minimal deviation always persists. To aount for this we normalize thisfuntion to zero by taking H ′(S) = H − H0, i.e. by subtrating the minimal value of

H, obtained for the best parameter set.Given this hoie of H ′ we an produe, in analogy with standard proedures instatistial physis, a joint probability distribution for model parameters given by
P (S) ∼ e−H′

. (16)This hoie guarantees that all statistial moments are �nite. This joint probabilitydistribution an then be used to ompute any moment of any set of parameters, in-luding single parameter distribution funtions, and ross-parameter orrelations suhas ovarianes. In Setion 4 we show results for the single parameter averages andtheir standard deviations. We also show some single parameter probability distributionfuntions. 31



In general the estimation of this probability distribution an be obtained by ran-domly generating many model parameter sets and weighing them aording to Eq. (16).The proedure is slightly ompliated beause we are dealing with an inverse problemin whih, given a trial set of parameters, omparison with the data is performed onlyafter the non-linear model dynamial equations have been solved. Fortunately for mod-els that onsist of small numbers of ordinary di�erential equations the omputationale�ort is not prohibitive.In pratie we used an ensemble of trial solutions, from whih we selet a numberof best strings, aording to a standard Monte Carlo proedure, weighted by Eq. (16),to generate the next generation of the ensemble. In order to do this we introdue amutation implemented in terms of random Gaussian noise around the best parametersets. This yields an e�etive minimization method, apable of exploring large regionsof parameter spae. It also reates as a byprodut an ensemble of good strings withsmall deviations to the data. For small enough deviations from the best string we ansample parameter spae in an unbiased manner. It is this ensemble, and its best string,that is then used to estimate Eq. (16). Results given in Setion 4 involve ensembleswith several million realizations and a hoie of σ, ommon to all points, orrespondingto 10% deviation between the best parameter estimate and other ensemble members.
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