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8. (a) Suppose Y1(t) is a solution of an autonomous system dY/dt = F(Y). Show
that Y2(t) = Y1(t + t0) is also a solution for any constant t0.

(b) What is the relationship between the solution curves of Y1(t) and Y2(t)?

9. Suppose Y1(t) and Y2(t) are solutions of an autonomous system dY/dt = F(Y),
where F(Y) satisfies the hypotheses of the Uniqueness Theorem. Suppose also that
Y2(1) = Y1(0). How are Y1(t) and Y2(t) related?

10. Consider the system
dx

dt
= 2

dy

dt
= y2.

(a) Calculate the general solution for the system.
(b) What solutions go to infinity?
(c) What solutions blow up in finite time?

11. Consider the system
dx

dt
= x2 + y

dy

dt
= x2y2.

Show that, for the solution (x(t), y(t)) with initial condition (x(0), y(0)) = (0, 1),

there is a time t∗ such that x(t) → ∞ as t → t∗. In other words the solution blows
up in finite time. [Hint: Note that dy/dt ≥ 0 for all x and y.]

2.7 THE SIR MODEL OF AN EPIDEMIC

H1N1 flu, often called “swine flu,” caused a worldwide pandemic in 2009. The out-
break began in Mexico early in the year, and eventually the Mexican government closed
many public and private facilities in Mexico City in an attempt to restrict the spread of
the disease. Nevertheless, the virus spread worldwide. Against the advice of public
health officials, some summer camps in the U.S. went so far as to use drugs such as
Tamiflu in a prophylactic fashion. More typically, we were encouraged to wash our
hands frequently, cough into our sleeves, and stay home during exams.

The pandemic seemed to peak in November of 2009, and by spring of 2010 the
number of cases was in rapid decline. The World Health Organization announced the
end of the pandemic in August of 2010.∗

Modeling an Epidemic
The spread of a contagious disease through a population involves intricate interactions
from the level of populations down to the level of individual cells and viruses. How-

∗To compare this pandemic to others, see the video “Secrets of the Dead: Killer Flu (1918)” at
http://www.pbs.org/wnet/secrets/episodes/preview-of-killer-flu/222/
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ever, it is still possible to learn interesting and useful information from relatively simple
models. A classical model, introduced by Kermack and McKendrick in 1927∗ is called
the SIR model. In this model, a population is divided into three groups—the susceptible
individuals, the infected individuals, and the recovered individuals.

In this model S(t) denotes the fraction of the population that can catch the disease
at time t , I (t) denotes the fraction of the population that has the disease and can spread
it to the susceptibles, and R(t) denotes the fraction of the population that has recovered
from the disease and cannot catch it again. This model is appropriate for the spread of a
flu epidemic since once a person has had a particular strain of flu, their immune system
prevents them from catching that strain again. Since flu spreads fairly quickly, we can
assume that time is measured in days. While most people recover from the flu fairly
easily, there is a low mortality rate. Those who do not survive are included in R(t).

We assume everyone in the population is either susceptible, infected, or recov-
ered, that is,

S(t) + I (t) + R(t) = 1

for all t . In addition, we assume that the disease spreads relatively quickly, so it is rea-
sonable to assume that the only change in the size of these groups is due to the disease.

To set up the model, we make some more specific assumptions. First, we as-
sume that the rate that susceptible people and infected people interact is proportional
to both the number of susceptibles and the number of infecteds, that is, proportional to
the product of S(t) and I (t). Some fraction of these interactions lead to a susceptible
becoming infected. We also assume that the infected individuals recover at a rate that
is proportional to the number of infecteds.

Based on these assumptions, our model is

dS

dt
= −αSI

d I

dt
= αSI − β I

d R

dt
= β I,

where α is the “contagion” parameter and β is the “recovery” parameter. If we know
S(t) and I (t), then R(t) = 1 − (S(t) + I (t)) (see Exercise 1). Consequently, we need
only keep track of S(t) and I (t), and we can consider the planar system

dS

dt
= −αSI

d I

dt
= αSI − β I.

The equilibria of this system are the solutions of the simultaneous system of equa-

∗See “A contribution to the mathematical theory of epidemics” by W. O. Kermack and A. G. McKendrick,
Proceedings Royal Society of London A 115, 1927, pp. 700–721.
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tions ⎧⎨
⎩

−αSI = 0

(αS − β)I = 0,

which is precisely the line I = 0. This makes sense since if there are no infecteds, then
no one can catch the disease. The next step is to sketch the direction field, and to do
so, we must choose values for the parameters. The recovery parameter β gives the rate
at which infecteds recover. If we assume that an infected person is contagious for an
average of ten days, then roughly 10% of the infecteds recover each day and β = 0.1.

Choosing α is more difficult since it contains the proportionality constant that
measures the likelihood of interaction within the population as well as the likelihood
of the disease spreading during an interaction. We test several different values of α

starting with α = 0.2. We focus on an initial condition (S(0), I (0)) ≈ (1, 0) with
I (0) > 0. It corresponds to a few infecteds existing in a population that is otherwise
entirely susceptible. In fact, we use (S(0), I (0)) = (0.99, 0.01), that is, one person in
100 is infected.

Note that the smaller we make I (0), the longer it takes the epidemic to manifest
itself. Both S(t) and I (t) change very slowly near the line of equilibrium points along
the S-axis.

The solution shows very interesting behavior (see Figure 2.58). The number I (t)
of infecteds grows initially. It peaks near t = 45 with I (45) ≈ 0.15. Finally, I (t) → 0
as t → ∞. The number S(t) of susceptibles initially decreases and then almost levels
off as t → ∞. However, note that S(t) does not tend to zero as t → ∞. Rather, it tends
toward S ≈ 0.2. In terms of the disease, the model predicts that the percentage of the
population that is infected will reach a maximum of approximately 15% after 45 days
and then quickly decrease to close to zero after 100 days. The fraction of the population
that contracts the disease during the epidemic is approximately 80%. Approximately
20% of the population never gets the disease.

If we try different values of the parameter α, we see that the predictions made
by the model vary quantitatively. As α increases, the maximum number of infecteds
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Figure 2.58
The solution curve and S(t)- and I (t)-graphs for the initial condition
(S(0), I (0)) = (0.99, 0.01) for α = 0.2 and β = 0.1.
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212 CHAPTER 2 First-Order Systems

increases while the number of susceptibles that avoid the disease decreases. We can
use the model to predict the effect of public health measures that alter the values of the
parameters α and β (see Figure 2.59).
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Figure 2.59
Solution curves in the SI -phase plane that
correspond to the initial condition
(S(0), I (0)) = (0.99, 0.01) with β = 0.1 and
α = 0.2, 0.3, and 0.4. As α increases, the
maximum number of infecteds increases while the
number of susceptibles that avoid the disease
decreases. If you compare this figure with
Figure 2.58, the solution curves corresponding to
α = 0.2 look different. This apparent difference is
caused by the fact that the distance between 0
and 1 is the same on both axes in this figure while
the distance between 0 and 1 is smaller on the
vertical axis than on the horizontal axis in
Figure 2.58.

A little phase plane analysis
If we write the SIR system as

dS

dt
= −αSI

d I

dt
= (αS − β)I,

we see that d I/dt = 0 if αS − β = 0. In other words, if S = β/α, the vectors in
the vector field are horizontal. To the right of the vertical line in the SI -phase plane,
d I/dt > 0, and the disease is spreading. To the left of this line, d I/dt < 0, and
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Figure 2.60
The threshold value for
α = 0.2 and β = 0.1

the disease is decreasing. Hence, the value S = β/α plays an important role in the
evolution of the disease. It is called the threshold value of the model. Given values
of α and β, if S(0) > β/α, then an epidemic occurs. If S(0) < β/α, then there is no
epidemic (see Figure 2.60).

The line S = β/α along which the vector field is horizontal is one example of
what is called a “nullcline.” In Section 5.2, we will study nullclines in great detail.

An analytic description of the solution curves
Phase plane analysis and numerical solutions for the SIR model give insight into the
evolution of a flu epidemic. Because the equations in this system are relatively simple
from an algebraic point of view, we can go one step further in describing the solutions
curves precisely. The technique we use is one of those ideas that is good to remember.
When it works, it gives a great deal of insight into the behavior of solutions.

Because both S(t) and I (t) are nonnegative, we see that dS/dt < 0, and S(t)
decreases monotonically as t → ∞. As as result, we can view the solution curves as
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graphs of functions of the variable S. Moreover, we have

d I

dS
= d I/dt

dS/dt

= αSI − β I

−αSI

= −1 +
(

β

α

)
1

S
.

This differential equation is one that we can solve by integrating both sides with respect
to S. We get

I (S) = −S + β

α
ln(S) + c,

where c is a constant of integration.
When an epidemic starts, there are only a few infected individuals, and almost the

entire population is susceptible. That is, S ≈ 1, and we have

0 ≈ I (1) = −1 + β

α
ln(1) + c = −1 + c.

In this case, it makes sense to take c = 1. We obtain the function

I (S) = −S + β

α
ln(S) + 1.

The graph of this function I (S) for α = 0.2 and β = 0.1 is almost identical to the
solution curve that is shown in Figure 2.58.

For any values of the parameters α and β, we can explicitly compute the maxi-
mum value of I (S), that is, the maximum fraction of the population that is ill during the
epidemic by doing a maximization problem (see Exercise 4). We can also compute the
fraction of the population that completely avoids getting the disease by computing the
value of S, 0 < S < 1, such that I (S) = 0. Unfortunately, we cannot solve this equa-
tion algebraically for S, but we can understand the behavior of its roots by graphing the
function I (S) for various values of α and β (see Exercise 5).

Perhaps the most interesting consequence of the computation of the function I (S)

is the fact that I (S) is determined by the ratio of β to α. In other words, if two choices
of α and β have the same ratio β/α, then the maximum number of infecteds and the
number who escape infection altogether are the same.

Concluding Remark
A dose of reality is in order. We have made a number of simplifying assumptions while
setting up the SIR model. The situations where this model gives precise, quantitative
predictions are limited to closed environments with simple social dynamics and limited
geographical separation (see Exercises 9 and 10). For an epidemic spreading around
the world, we must include geographical effects as well as the differences in rates of
contact among and within different groups of people. In these cases, the SIR model is
the starting point for more involved models.
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EXERCISES FOR SECTION 2.7

1. For the SIR-model, show that S(t) + I (t) + R(t) = 1 for all t directly from the
system of differential equations.

2. In the SIR model, we assume that everyone in the population is susceptible at time
t = 0 except the very small fraction that is already infected. Suppose that some
fraction of the population has received a vaccine, so they cannot catch the disease.
The vaccine makes the fraction of the population that is susceptible at time t = 0
smaller.

(a) Using HPGSystemSolver applied to the SIR model with α = 0.25 and
β = 0.1, describe the behavior of the solutions with I (0) = 0.01 and S(0) =
0.9, 0.8, 0.7, . . . . Pay particular attention to the maximum of I (t), that is, the
maximum number of infecteds for each choice of S(0). Also, note the limit of
S(t) as t → ∞. (This limit is the fraction of the population that does not catch
the disease during the epidemic.)

(b) If α = 0.25 and β = 0.1, how large a fraction of the population must be vacci-
nated in order to keep the epidemic from getting started with I (0) = 0.01?

3. Vaccines make it possible to prevent epidemics. However, the time it takes to de-
velop a vaccine may make it impossible to vaccinate everyone in a population before
a disease arrives.

(a) For the SIR model, which initial conditions guarantee that d I/dt < 0? [Hint:
Your answer should be expressed in terms of the parameters α and β.]

(b) For given values of α and β, what fraction of a population must be vaccinated
before a disease arrives in order to prevent an epidemic?

4. In this section we showed that solution curves of the SIR model with S(0) ≈ 1 and
I (0) ≈ 0 are graphs of the function

I (S) = −S + β

α
ln(S) + 1.

(Note that the graph depends only on the ratio ρ = β/α of the parameters. Different
values of the parameters can give the same value of ρ.)

(a) Determine the maximum value of I (S) in terms of ρ.
(b) Is the statement “The epidemic cannot get started if β > α” true or false?

Justify your answer.

5. Let ρ denote the ratio β/α of the parameters α and β in the SIR model. Then

I (S) = −S + ρ ln(S) + 1.

(a) Using graphing technology, graph I (S) over the interval 0 < S ≤ 1 for various
values of ρ between 0.1 and 1.0.

(b) Using the graphs that you produced in part (a), graph the solution of I (S) = 0
for 0 < S < 1 as a function of ρ.
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(c) What does the graph that you produced in part (b) tell you about the long-term
predictions of the SIR model in terms of the ratio ρ?

6. One of the basic assumptions of the SIR model is that individuals who recover from
the disease never get it again. However, diseases continually evolve, and new strains
can emerge that can infect those who have recovered from the previous strain. In
this exercise, we modify the SIR model so that recovereds become susceptible again
in a linear rate. We obtain the system of equations

dS

dt
= −αSI + γ R

d I

dt
= αSI − β I

d R

dt
= β I − γ R

(a) Show that the sum S(t) + I (t) + R(t) is constant as a function of t for this
model.

(b) Derive a system in the two dependent variables S and I using the fact that R =
1 − (S + I ).

(c) What are the equilibrium points for this model of the two variables S and I?
(Hint: Both S and I are nonnegative, and S(t) + I (t) ≤ 1 for all t .)

(d) Fix α = 0.3, β = 0.15, and γ = 0.05 and use HPGSystemSolver to sketch
the phase portrait. Describe the behavior of solutions.

(e) How does the system change if we fix α = 0.3 and β = 0.15, but vary γ over
a small interval surrounding γ = 0.05?

7. In the movie I Am Legend, the infecteds work together to increase the number of
infecteds. We can modify the SIR model to include the assumption that zombies
actively infect susceptibles by replacing I by

√
I in the interaction term. (Note that

0 ≤ I ≤ 1, so
√

I ≥ I .) We obtain the system

dS

dt
= −αS

√
I

d I

dt
= αS

√
I − β I.

(a) Calculate the equilibrium points of this model.
(b) Find the region of the phase plane where d I/dt > 0.
(c) Use α = 0.2 and β = 0.1 and sketch the phase portrait. What does the model

predict for the spread of the zombies in this case?

8. Many zombie movies are based on the premise that zombies do not stop infecting
new victims until they are destroyed by a susceptible. In addition, the susceptibles
destroy as many zombies as they can. We can model the spread of zombies in such
a movie by assuming that infecteds (zombies) become recovereds (zombies who can
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not infect susceptibles) at a rate proportional to the size of the remaining susceptible
population. We obtain the system

dS

dt
= −αSI

d I

dt
= αSI − γ S.

(a) Calculate the equilibrium points of this model.
(b) Find the region of the phase plane where d I/dt > 0.
(c) Use α = 0.2 and γ = 0.1 and sketch the phase portrait. What does the model

predict for the spread of the zombies in this case?

The SIR model is particularly relevant to a homogenous population in an enviroment
with little geographic distribution. A famous example of exactly this situation occurred
in 1978 at a British boarding school.∗ A single boy in the school of 763 students con-
tracted the flu and the epidemic spread rapidly, as shown in Table 2.3. (We are assum-
ing that the number of students confined to bed was the same as the number of infected
students.)

Table 2.3
The daily count of the number of infected students.

t Infected t Infected t Infected

0 1 5 222 10 123

1 3 6 282 11 70

2 7 7 256 12 25

3 25 8 233 13 11

4 72 9 189 14 4

9. Assume that the parameter α = 1.66 in the SIR model for the data in Table 2.3.

(a) Using whatever technology that is most convenient, determine an appropriate
value of β that matches the data in Table 2.3.

(b) Using the value of β that you computed in part (a), calculate the total number
of students who caught the flu during the epidemic.

(c) Interpret the value of β that you computed in part (a) in terms of the length of
time that students with the flu remained infected.

10. Using α = 1.66 and the value of β that you determined in Exercise 9, how would the
progress of the epidemic have changed if 200 students had been vaccinated before
the disease started? (Give as precise an answer as possible.)

∗Anonymous, “Epidemiology: Influenza in a boarding school,” British Medical Journal, Vol. 4, 1978,
p. 587.
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