
4.6 Iterative Solvers for Linear Systems

Why use iterative methods?

Virtually all direct methods for solving Ax = b require O(n3) floating point oper-
ations. In practical applications the matrix A often has a very special structure, and
possibly contains many zero entries (is sparse). It is especially in these cases where
iterative methods pay off. As an example, recall the discretized Poisson problem from
the very first class meeting. Certain iterative methods were mentioned that can solve
the resulting linear system in O(n) operations. We now study some of these methods
in detail.

4.6.1 Classical Iterative Solvers

We begin with a simple example.

Example: Consider the (iterative) solution of the linear system (see also the Maple
worksheet 577 Iterative Solvers.mws)

[

2 1
1 2

] [

x1

x2

]

=

[

6
6

]

.

The simplest approach is to use a fixedpoint iteration scheme. Thus, we solve the first
equation for x1, and the second equation for x2, and start the iteration with some

initial guess x(0) = [x
(0)
1 x

(0)
2]T . This results in

x
(k)
1 =

(

6− x
(k−1)
2

)

/2

x
(k)
2 =

(

6− x
(k−1)
1

)

/2,

for k = 1, 2, 3, The method just described is known as Jacobi iteration, and a
general algorithm is given by

Algorithm (Jacobi iteration)

Input A, b, x, n, M

for k = 1 to M do

for i = 1 to n do

ui =




bi −

n∑

j=1
j 6=i

aijxj




 /aii

end

for i = 1 to n do

xi = ui

end

end

Output x

1

An obvious improvement of the Jacobi iteration is to use the most recent estimate
for xi as soon as it becomes available. For the example above this results in

x
(k)
1 =

(

6− x
(k−1)
2

)

/2

x
(k)
2 =

(

6− x
(k)
1

)

/2,

for k = 1, 2, 3, This method is known as Gauss-Seidel iteration, and the general
algorithm is

Algorithm (Gauss-Seidel iteration)

Input A, b, x, n, M

for k = 1 to M do

for i = 1 to n do

xi =




bi −

n∑

j=1
j 6=i

aijxj




 /aii

end

end

Output x

Remarks:

1. Both algorithms can be made more efficient by moving the division to a prepro-
cessing step.

2. For a generic problem Gauss-Seidel iteration converges faster than Jacobi itera-
tion. However, there are certain problems for which Jacobi iteration may converge
faster.

3. Jacobi iteration has the advantage that it can be implemented on a parallel
computer in a straightforward manner.

In a more abstract setting we want to consider the solution of the linear system
Ax = b by an iterative algorithm of the form

x(k) = Gx(k−1) + c, k = 1, 2, 3, . . . , (14)

where x(0) is our initial guess, G is a (constant) iteration matrix, and c is a (constant)
vector. All of the classical solvers discussed here are based on a splitting of A of the
form

A = A−Q + Q

with splitting matrix Q. Thus, provided Q−1 exists,

Ax = b ⇔ Qx + (A−Q)x = b

⇔ Qx = (Q−A)x + b (15)

⇔ x =
(

I −Q−1A
)

︸ ︷︷ ︸

=G

x + Q−1b
︸ ︷︷ ︸

=c

. (16)

Our goals in choosing the splitting matrix Q are

2

1. Q should be invertible, i.e., we want to be able to solve (15) efficiently.

2. The iteration (14) should converge quickly to a fixed point.

The two extreme choices Q = A and Q = I correspond to the original problem
Ax = b (so that nothing has been gained), and the so-called Richardson method x(k) =
(I −A)x(k−1) + b = x(k−1) + r(k−1) (for which no system needs to be solved, but which
– depending on A – may not converge). Therefore, one usually chooses Q somewhere
between these two extremes.

We can see that the Jacobi iteration as defined above corresponds to the choice
Q = diag(A). To this end,

Q−1A =









1
a11

1
a22

. . .
1

ann

















a11 a12 . . . a1n

a21 a22 . . . a2n
...

. . .
...

an1 an2 . . . ann









=









a11
a11

a12
a11

. . . a1n

a11
a21
a22

a22
a22

. . . a2n

a22
...

. . .
...

an1
ann

an2
ann

. . . ann

ann









,

i.e., the rows of A are scaled by the reciprocals of the diagonal entries. Then we have

Q−1Ax =









(
∑

a1jxj) /a11

(
∑

a2jxj) /a22
...

(
∑

anjxj) /ann









and Q−1b =









b1/a11

b2/a22
...

bn/ann









,

so that (using (16) componentwise)

x
(k)
i = x

(k−1)
i −





n∑

j=1

aijx
(k−1)
j



 /aii + bi/aii

=




bi −

n∑

j=1
j 6=i

aijx
(k−1)
j




 /aii,

which is exactly the formula used in the algorithm.
The Gauss-Seidel iteration algorithm can be derived by taking Q as the lower tri-

angle of A, i.e.,

Qij =

{
Aij , i ≥ j
0, otherwise.

Thus (15) can be written as

Qx(k) = (Q−A)x(k−1) + b








a11

a21 a22
...

. . .

an1 an2 . . . ann









x(k) = −










0 a12 . . . a1n

0
...

. . . an−1,n

0










x(k−1) + b.

3

If we solve this for x
(k)
i , i = 1, . . . , n, we get

x
(k)
1 =



−
n∑

j=2

a1jx
(k−1)
j + b1



 /a11

x
(k)
2 =



−
n∑

j=3

a2jx
(k−1)
j + b2 − a21x

(k)
1



 /a22

...

x
(k)
i =



−
n∑

j=i+1

aijx
(k−1)
j + bi −

i−1∑

j=1

aijx
(k)
j



 /aii

...

x(k)
n =



bn −
n−1∑

j=1

anjx
(k)
j



 /ann.

This, however, is equivalent to

xi ←




bi −

n∑

j=1
j 6=i

aijxj




 /aii,

which is the formula from the algorithm.
We now turn to a discussion of the properties required of a general iteration matrix

G (or splitting matrix Q) so that the fixed point iteration (14) is guaranteed to converge.

Theorem 4.14 If ‖G‖ = ‖I−Q−1A‖ < 1 then (14) converges to a solution of Ax = b
for any starting vector x(0).

Proof: It is clear that (14) is a fixed point iteration (x = F (x)), and the fixed point is
a solution of Ax = b. This follows immediately from the equivalence transformations
involving (15) and (16).

Now, let
e(k) = x(k) − x,

where x is the fixed point solution. Then

e(k) = Gx(k−1) + c− (Gx + c)

= G
(

x(k−1) − x
)

= Ge(k−1).

Taking norms, we have

‖e(k)‖ = ‖Ge(k−1)‖ ≤ ‖G‖‖e(k−1)‖.

Proceeding recursively we get

‖e(k)‖ ≤ ‖G‖k‖e(0)‖,

so that ‖e(k)‖ → 0 if ‖G‖ < 1. Of course, this ensures x(k) → x, i.e., convergence of
the method. ♠

4

Corollary 4.15 If A is diagonally dominant, then Jacobi iteration converges for any
x(0).

Proof: By the definition of diagonal dominance (Definition 4.8 in Sect. 4.3) the entries
of A satisfy

|aii| >
n∑

j=1
j 6=i

|aij |, i = 1, . . . , n. (17)

We need to show ‖I −Q−1A‖ < 1. Since the statement of Theorem 4.14 holds for any
matrix norm, we can take ‖ · ‖∞. Earlier we showed that, for Jacobi iteration,

Q−1A =









1 a12
a11

. . . a1n

a11
a21
a22

1 . . . a2n

a22
...

. . .
...

an1
ann

an2
ann

. . . 1









.

But then

‖I −Q−1A‖∞ = max
1≤i≤n

n∑

j=1

∣
∣
∣
∣

(

I −Q−1A
)

ij

∣
∣
∣
∣

= max
1≤i≤n

n∑

j=1
j 6=i

∣
∣
∣
∣

aij

aii

∣
∣
∣
∣

< 1

by the diagonal dominance of A (17). ♠
In order to be able to formulate a necessary and sufficient condition for the con-

vergence of (14) we need to cite a lemma which follows from the Schur factorization
Theorem 5.19 in Sect. 5.6.

Lemma 4.16 Any n × n matrix A is similar to an upper triangular matrix U whose
off-diagonal elements are arbitrarily small, i.e., for any ε > 0 there exists a nonsingular
n× n matrix S such that

S−1AS = U = D + T,

where D = diag(U) (containing the eigenvalues of A) and ‖T‖∞ < ε.

Proof: See textbook p. 214 (proof of Theorem 3). ♠
Remark: Lemma 4.16 says that any n × n matrix A is almost similar to a diagonal
matrix. This is what we saw at work when computing eigenvalues via the QR iteration
algorithm in Sect. 5.7.3.

The next ingredient requires that we introduce the spectral radius of A, denoted
by ρ(A) = max1≤i≤n {|λi| : λi an eigenvalue of A}.

Theorem 4.17 The spectral radius of A is the largest lower bound for any matrix
norm induced by a vector norm, i.e.,

ρ(A) = inf
‖·‖
‖A‖.

5

Proof: First we show ρ(A) ≤ inf‖·‖ ‖A‖. Let (λ, x) be the eigenpair of A for which
ρ(A) = |λ|. Then, for any vector norm,

‖A‖ = sup
‖u‖=1

‖Au‖ ≥ ‖Ax‖
‖x‖ =

‖λx‖
‖x‖ = |λ| = ρ(A).

Taking the infimum over all induced matrix norms we get inf‖·‖ ‖A‖ ≥ ρ(A).
Next we show that ρ(A) ≥ inf‖·‖ ‖A‖. Applying the maximum norm to the factor-

ization of Lemma 4.16 we have

‖S−1AS‖∞ = ‖D + T‖∞ ≤ ‖D‖∞ + ‖T‖∞.

Now, Lemma 4.16 ensures that for any ε > 0 we have ‖T‖∞ < ε. Moreover, D =
diag(λ1, . . . , λn) so that

‖D‖∞ = ρ(A).

Therefore,
‖S−1AS‖∞ ≤ ρ(A) + ε.

From the homework problem 4.6#6 we know that there exists another induced norm
‖ · ‖′∞ such that

‖A‖′∞ = ‖S−1AS‖∞.

Therefore,
‖A‖′∞ ≤ ρ(A) + ε.

Finally, we can take the infimum and obtain

inf
‖·‖
‖A‖ ≤ ρ(A) + ε.

Since this statement holds for arbitrary ε we have

inf
‖·‖
‖A‖ ≤ ρ(A)

and are done. ♠
Now we can prove

Theorem 4.18 The iteration x(k) = Gx(k−1) + c (cf. (14)) converges to the solution
of Ax = b for any initial guess x(0) if and only if ρ(G) < 1.

Proof: First we assume ρ(G) < 1 and show convergence. Theorem 4.17 tells us
that there exists a matrix norm for which ‖G‖ < 1, and then Theorem 4.14 ensures
convergence.

To prove the reverse implication we assume ρ(A) > 1 and deduce divergence of the
fixed point iteration. Let (λ, u) be an eigenpair of G with |λ| ≥ 1. Then we choose x(0)

as
x(0) = u + x,

where x is the fixed point of (14). Now, using (14) we have

x(k) − x = G(x(k−1) − x).

6

By applying this idea recursively we obtain

x(k) − x = Gk(x(0) − x) = Gku = λku.

By the choice of (λ, u) we see that x(k) diverges. ♠
A sufficient convergence criterion for Gauss-Seidel iteration can now also be formu-

lated.

Theorem 4.19 If A is symmetric and positive definite then Gauss-Seidel iteration
converges for any initial vector x(0).

Remark: The statement of the theorem can be relaxed. All that is needed is that A is
symmetric positive semi-definite with positive diagonal entries, and such that a solution
of Ax = b exists. This slightly weaker version ensures that the normal equations can
be solved using Gauss-Seidel iteration.

Proof of Theorem 4.19: According to Theorem 4.18 we need to show ρ(G) < 1,
where, for Gauss-Seidel iteration, we have

G = I −Q−1A = I − (L + D)−1A. (18)

Here we have decomposed A into

A = L + D
︸ ︷︷ ︸

=Q

+ LT
︸︷︷︸

=A−Q

,

where L is the lower triangular part of A without the diagonal.
We begin by defining a vector norm

‖x‖A =
√

xT Ax

which induces a matrix norm

‖G‖A = max
x6=0

‖Gx‖A
‖x‖A

.

This allows us to make use of Theorem 4.17, and we can instead show

‖Gx‖2A
‖x‖2A

=
(Gx)T AGx

xT Ax
< 1, (19)

since then
ρ(G) ≤ ‖G‖A < 1.

Now, (19) is equivalent to
xT (A−GT AG)x > 0. (20)

Using the definition of G (18) some messy manipulations yield

A−GT AG = A(LT + D)−1D(L + D)−1A
= A(LT + D)−1

√
D
√

D(L + D)−1A,

7

where the positive definiteness of A (di > 0) permits the last step. Returning to (20),
and using the symmetry of A, we have

xT (A−GT AG)x = xT A(LT + D)−1
√

D
︸ ︷︷ ︸

=yT

√
D(L + D)−1Ax

︸ ︷︷ ︸

=y

= yT y ≥ 0.

In fact, this inequality is strict for x 6= 0 since
√

D(L + D)−1A has full rank. ♠
Rate of Convergence

We want to have an estimate for how many iterations are required in the fixed point
iteration

x(k) = Gx(k−1) + c

to reduce the initial error e(0) = x(0)−x by a factor of 10−α for some positive exponent
α.

We know (see the proof of Theorem 4.14) that the fixed point iteration scheme leads
to an error estimate of the form

‖e(k)‖ ≤ ‖G‖k‖e(0)‖.

Now, using Theorem 4.17 we can conclude

‖e(k)‖ ≤ [ρ(G)]k ‖e(0)‖.

Our goal is to reduce the initial error by a factor 10−α. Therefore, we want

‖e(k)‖ ≤ [ρ(G)]k ‖e(0)‖ ≤ 10−α‖e(0)‖

or
[ρ(G)]k ≤ 10−α.

Thus
k ln (ρ(G)) ≤ −α ln 10.

Since, for a convergent fixed point iteration we have 0 < ρ(G) < 1 we get

k ≥ α ln 10

− ln (ρ(G))
.

If we define the rate of convergence

r =
− ln (ρ(G))

ln 10
=

1

log10 (ρ(G))
,

then we should have
k ≥ α

r

to ensure the desired improvement.

8

Successive Over Relaxation (SOR)

Another iterative solver can be obtained by computing the iterate x(k) as a combi-
nation of x(k) and x(k−1), i.e.,

x(k) ← (1− ω)x(k−1) + ωx(k),

with the relaxation parameter ω chosen appropriately. This is a generalization of the
Gauss-Seidel iteration (corresponding to ω = 1). The standard SOR algorithm is as
follows (a more general version is discussed in the textbook):

Algorithm (SOR iteration)

Input A, b, x, ω, n, M

for k = 1 to M do

for i = 1 to n do

ui = (1− ω)xi + ω



bi −
i−1∑

j=1

aijuj −
n∑

j=i+1

aijxj



 /aii

end

for i = 1 to n do

xi = ui

end

end

Output x

Theorem 4.20 If A is symmetric and positive definite and 0 < ω < 2 then SOR
iteration converges for any starting value x(0).

Proof: omitted ♠
Remarks:

1. The optimal value of ω is known only for special cases. For example, if A is
tridiagonal, then

ωopt =
2

1 +
√

1− ρ(G)
,

where G is the iteration matrix for the Gauss-Seidel iteration.

2. For (sparse) matrices with special structure the basic iteration algorithms can
be implemented much more efficiently. For example, for the Poisson problem
discussed at the beginning of the semester Jacobi iteration becomes

9

for k = 1 to M do

for i = 1 to n− 1 do

for j = 1 to n− 1 do

u
(k)
ij =

(

u
(k−1)
i−1,j + u

(k−1)
i,j−1 + u

(k−1)
i+1,j + u

(k−1)
i,j+1 +

fij

n2

)

/4

end

end

end

Note that even though the system matrix A is of size n2×n2 only five entries per
row are non-zero and they are hard-coded into the algorithm. Thus, the matrix
A is never explicitly and completely formed. In Matlab the i-j double loops can
be implemented in one single line of code.

3. A few other classical iterative methods such as symmetric successive over relax-
ation (SSOR) and Chebyshev iteration are discussed in the textbook.

4. Due to their rather slow convergence classical iterative solvers are no longer very
popular as solvers of linear systems. However, they are frequently used as precon-
ditioners for more sophisticated methods (e.g., conjugate gradient or multigrid).

4.7 Steepest Descent and Conjugate Gradient Methods

Even though the SOR method may converge faster than Jacobi or Gauss-Seidel iter-
ation, it is difficult to choose a good relaxation parameter ω. Therefore, most of the
time another class of iterative solvers is used for linear systems with symmetric positive
definite system matrices. These methods are based on

Theorem 4.21 If A is symmetric positive definite, then solving Ax = b is equivalent
to minimizing the quadratic form

q(x) = 〈x, Ax〉 − 2〈x, b〉.

Remarks:

1. Here we have used the notation 〈x, y〉 = xT y =
n∑

i=1

xiyi for the standard inner

product in IRn.

2. The family of optimization based iterative solvers is also known as Krylov subspace
iteration in the literature.

10

Proof: First we consider only changes of q along the ray x + tv, where t ∈ IR, and
v 6= 0 a fixed direction. By definition

q(x + tv) = 〈x + tv, A(x + tv)〉 − 2〈x + tv, b〉
= 〈x, Ax〉+ 〈tv, Ax〉+ 〈x, A(tv)〉+ 〈tv, A(tv)〉 − 2〈x, b〉 − 2〈tv, b〉
= 〈x, Ax〉 − 2〈x, b〉

︸ ︷︷ ︸

=q(x)

+〈tv, Ax〉+ 〈x, A(tv)〉+ 〈tv, A(tv)〉 − 2〈tv, b〉 (21)

Now, using the symmetry of A,

〈x, A(tv)〉 = txT (Av) = t
(

vT AT x
)T

= t
(

vT Ax
)T

= tvT Ax,

where the last equality holds because the inner product is a scalar quantity. Therefore,

〈x, A(tv)〉 = t〈v, Ax〉. (22)

Inserting (22) into (21) we get

q(x + tv) = q(x) + 2t〈v, Ax〉+ t2〈v, Av〉 − 2t〈v, b〉
= q(x) + 2t〈v, Ax− b〉+ t2〈v, Av〉. (23)

Note that here 〈v, Av〉 > 0 since A is positive definite and v 6= 0. Therefore, as a
quadratic function of t (with positive leading coefficient) q(x + ·v) has a minimum.

A necessary condition for the minimum (along the ray x + tv) is

d

dt
q(x + tv) = 0.

Thus, we calculate
d

dt
q(x + tv) = 2〈v, Ax− b〉+ 2t〈v, Av〉. (24)

Clearly, (24) is zero for

t̂ =
−〈v, Ax− b〉
〈v, Av〉 =

〈v, b−Ax〉
〈v, Av〉 .

The value of the minimum is obtained from (23):

q(x + t̂v) = q(x) + 2
〈v, b−Ax〉
〈v, Av〉 〈v, Ax− b〉+

(〈v, b−Ax〉
〈v, Av〉

)2

〈v, Av〉

= q(x)− 2
〈v, b−Ax〉2
〈v, Av〉 +

〈v, b−Ax〉2
〈v, Av〉

= q(x)− 〈v, b−Ax〉2
〈v, Av〉 .

Now, q(x+ t̂v) < q(x) if and only if 〈v, b−Ax〉 6= 0, i.e., the direction v is not orthogonal
to the residual. Thus the value of q can be reduced by moving from x to x + tv along
the direction v, where v is some direction not orthogonal to the residual b−Ax.

To conclude the proof we have two possibilities to consider:

11

1. x is a solution of Ax = b, i.e., b − Ax = 0. Then q(x) is actually the minimum
value, and no choice of v can reduce the value of q (i.e., “x solution of Ax = b”
=⇒ “x minimizer of q”).

2. x is such that Ax 6= b, then there exists a direction v such that 〈v, b − Ax〉 6= 0
and so q(x) is not a minimum (and thus can be improved – which we do until
we have reached the minimum and case 1.). So, “x a minimizer of q” =⇒ “x a
solution of Ax = b”.

The claim is established. ♠
The argument used at the end of the proof suggests an iterative algorithm for the

solution of Ax = b via minimization of q.

“Algorithm”

Input A, b, initial guess x(0), initial search direction v(0)

for k = 0, 1, . . . do

Calculate the “stepsize” t =
〈v(k), b−Ax(k)〉
〈v(k), Av(k)〉

Update the solution x(k+1) = x(k) + tv(k)

Pick a new search direction v(k+1)

Output x(k+1)

Remark: The preceding algorithm is in quotation marks since it is not yet a complete
algorithm. We have not yet answered how to choose the search directions v(k+1). The
only constraint we have so far is that 〈v, b−Ax〉 6= 0.

Method of Steepest Descent

From Calculus we know that the gradient of q indicates the direction of greatest
change. Therefore, in the so-called method of steepest descent we choose

v(k+1) = −∇q(x(k+1)).

In homework problem 4.7#1 you will show that

∇q(x(k+1)) = 2(Ax(k+1) − b),

and so we get

Algorithm (Steepest descent)

Input A, b, initial guess x

for k = 0, 1, . . . do

v = b−Ax

t =
〈v, v〉
〈v, Av〉 (see the rough “algorithm” above)

x = x + tv

Output x

12

Remark: This method is not very practical, as it usually converges rather slowly.
Since the level curves of q are ellipses (for problems with two unknowns), the search
directions tend to zig-zag down the surface instead of going straight to the bottom of
the valley (especially for elongated ellipses, i.e., κ2(A) large). See Figure 4.3 in the
textbook.

Conjugate Search Directions

The main ingredient in deriving another one of the “top ten algorithms of the 20th
century” (the conjugate gradient method) will be the use of so-called conjugate search
directions. To this end we introduce

Definition 4.22 Let A be a symmetric positive definite matrix. Then the inner product

〈x, y〉A = 〈x, Ay〉

is called an A-inner product.

The A-inner product induces a vector norm

‖x‖A =
√

〈x, x〉A =
√

〈x, Ax〉.

We call a set of vectors {u(1), . . . , u(n)} A-orthonormal if

〈u(i), u(j)〉A = δij .

The main theorem (which will give us the conjugate gradient method) is

Theorem 4.23 Let {u(1), . . . , u(n)} be an A-orthonormal set, and define

x(i) = x(i−1) + 〈b−Ax(i−1), u(i)〉u(i), i = 1, . . . , n, (25)

with x(0) an arbitrary starting vector. Then

Ax(n) = b.

Remarks:

1. Note that Theorem 4.23 says that the iteration (25) yields the solution of Ax = b
in n steps, and thus can be considered a direct method. However, in practice this
usually does not happen (due to roundoff errors). Historically, this means that
– after its introduction in 1952 by Hestenes and Stiefel – the conjugate gradient
method was considered a useless (direct) method, and long forgotten.

2. In the 1970s it was observed that for certain (large, sparse, and well-conditioned)
problems the conjugate gradient method converges extremely fast to an accurate
approximate solution of Ax = b (much faster than in n steps). And thus, it
has become one of the top iterative solvers. In fact, one can show that, for
well-conditioned problems, the conjugate gradient method converges in O(

√
κ)

iterations.

13

Proof of Theorem 4.23: From (25) we see that we can define the stepsize as

ti = 〈b−Ax(i−1), u(i)〉. (26)

Then (25) becomes
x(i) = x(i−1) + tiu

(i).

We multiply this by A and get

Ax(i) = Ax(i−1) + tiAu(i). (27)

Therefore, proceeding recursively,

Ax(n) = Ax(n−1) + tnAu(n)

= Ax(n−2) + tn−1Au(n−1) + tnAu(n)

...
= Ax(0) + t1Au(1) + t2Au(2) + . . . + tnAu(n).

Now we subtract b and take the inner product with u(i) (which allows us to use the
A-orthonormality of {u(1), . . . , u(n)}) to arrive at

〈Ax(n) − b, u(i)〉 = 〈Ax(0) − b, u(i)〉+
n∑

j=1

tj 〈Au(j), u(i)〉
︸ ︷︷ ︸

=δij

= 〈Ax(0) − b, u(i)〉+ ti.

If we can show that
ti = −〈Ax(0) − b, u(i)〉, (28)

then 〈Ax(n) − b, u(i)〉 = 0, and so Ax(n) − b is orthogonal to all u(i), i = 1, . . . , n.
In order to see the implications of this statement we observe below that {u(1), . . . , u(n)}

form a basis for IRn, and thus Ax(n)−b = 0 (which proves the statement of the theorem).
From the A-orthonormality of {u(1), . . . , u(n)} we know

〈Au(j), u(i)〉 = δij ,

so that
UT AU = I.

This implies that both A and U are nonsingular, and thus the columns u(i), i = 1, . . . , n,
of U form a basis of IRn.

It now remains to establish (28). From (26) we have

ti = 〈b−Ax(i−1), u(i)〉
= 〈b−Ax(0) + Ax(0) −Ax(1) + Ax(1) − . . .−Ax(i−2) + Ax(i−2) −Ax(i−1), u(i)〉
= 〈b−Ax(0), u(i)〉+ 〈Ax(0) −Ax(1)

︸ ︷︷ ︸

=−t1Au(1)

, u(i)〉+ . . . + 〈Ax(i−2) −Ax(i−1)
︸ ︷︷ ︸

=−ti−1Au(i−1)

, u(i)〉,

where we have used (27). Thus,

ti = 〈b−Ax(0), u(i)〉 − t1 〈Au(1), u(i)〉
︸ ︷︷ ︸

=0

− . . .− ti−1 〈Au(i−1), u(i)〉
︸ ︷︷ ︸

=0

14

= −〈Ax(0) − b, u(i)〉,

which establishes (28). ♠
The main question now is

How to find {u(1), . . . , u(n)}?

We can use any basis of IRn, and then obtain {u(1), . . . , u(n)} by applying the Gram-
Schmidt algorithm (with respect to the A-inner product) to this set. Therefore, we start
with the canonical basis {e(1), . . . , e(n)}. Then

u(1) =
e(1)

‖e(1)‖A
=

e(1)

√

〈e(1), Ae(1)〉
,

and the general step is

u(i) =
v(i)

‖v(i)‖A
,

where

v(i) = e(i) −
i−1∑

j=1

〈e(i), u(j)〉Au(j).

Since 〈e(i), u(j)〉A = 〈e(i), Au(j)〉 = (Au(j))i we have

u(1) =
e(1)

√
a11

and

v(i) = e(i) −
i−1∑

j=1

(Au(j))iu
(j).

Before stating the conjugate gradient algorithm we reformulate Theorem 4.23 for
an A-orthogonal (instead of A-orthonormal) set.

Theorem 4.24 Let {v(1), . . . , v(n)} be an A-orthogonal set, and define

ti =
〈b−Ax(i−1), v(i)〉

‖v(i)‖A
.

Then, for any starting vector x(0), the iteration

x(i) = x(i−1) + tiv
(i), i = 1, . . . , n,

yields
Ax(n) = b.

Proof: Obvious. ♠
Remark: Here the search directions v(i) are fixed before the algorithm is started. It
is better to determine v(i) when needed during the algorithm by making sure that at
each step the components in the previously used directions are removed. This is done
in

15

Algorithm (Conjugate gradient method)

(1) Input A, b, x(0), M , ε

(2) r(0) = b−Ax(0)

(3) v(0) = r(0)

(4) Output 0, x(0), r(0)

(5) for k = 0 to M − 1 do

(6) if v(k) = 0 then stop

(7) tk =
‖r(k)‖22
‖v(k)‖2A

(8) x(k+1) = x(k) + tkv
(k)

(9) r(k+1) = r(k) − tkAv(k)

(10) if ‖r(k+1)‖2 < ε then stop

(11) sk =
‖r(k+1)‖22
‖r(k)‖22

(12) v(k+1) = r(k+1) + skv
(k)

(13) Output k + 1, x(k+1), r(k+1)

(14) end

Remarks:

1. A “computer version” (with lots of overwriting) is listed in the textbook on
page 238.

2. The conjugate gradient algorithm is very efficient since the bulk of work for each
iteration is the one matrix-vector multiplication Av(k) needed for the update of
the residual. It is essential that this operation is customized for the matrix A. For
many sparse matrices this can be done in O(n) operations, and thus the overall
operations count for the conjugate gradient method for many problems is also
O(n).

3. The Matlab script CGDemo.m illustrates the convergence behavior of the conjugate
gradient algorithm. In this example the CG algorithm is applied to a 500 ×
500 symmetric positive definite matrix. The parameter τ affects the number
of nonzero entries as well as the 2-norm condition number of A. This is done
by replacing all off-diagonal entries of A with |aij | > τ by zero, i.e., for small
τ A is very sparse and well-conditioned, whereas for large τ both the number
of non-zero entries as well as the condition number increase. We can see that
for the ill-conditioned case no convergence at all is achieved in the allowed 20
iterations, whereas for the well-conditioned matrix the CG algorithm converges
in 8 iterations to a solution with relative residual accuracy of 10−16.

16

We now need to show that this algorithm agrees with the theory developed so far.
Thus, we need to show {v(0), v(1), . . . , v(n−1)} is A-orthogonal (see c) in Theorem 4.25).
Moreover, we will show that the residuals {r(0), r(1), . . . , r(n−1)} are orthogonal (cf. e)),
and that they can be computed recursively as formulated in the algorithm (follows from
d) below).

Theorem 4.25 If we use the conjugate gradient algorithm to solve the linear system
Ax = b, where A is an n× n symmetric positive matrix, then for any m < n

a) 〈r(m), v(i)〉 = 0, (0 ≤ i < m),

b) 〈r(i), r(i)〉 = 〈r(i), v(i)〉, (0 ≤ i ≤ m),

c) 〈v(m), Av(i)〉 = 0, (0 ≤ i < m),

d) r(i) = b−Ax(i), (0 ≤ i ≤ m),

e) 〈r(m), r(i)〉 = 0, (0 ≤ i < m),

f) r(i) 6= 0, (0 ≤ i ≤ m).

Remark: Items a) and b) are not directly related to the claims formulated above, but
are required to prove the other statements.

Proof: We use induction on m. The beginning, m = 0 is trivial. Now we assume that
the statements a)−−f) hold for m and prove they are true for m + 1.

a) Show 〈r(m+1), v(i)〉 = 0, (0 ≤ i ≤ m). First, we treat the case i = m. Using the
recursive definition of the residuals from line (9) of the CG algorithm we have

〈r(m+1), v(m)〉 = 〈r(m) − tmAv(m), v(m)〉
= 〈r(m), v(m)〉 − tm〈Av(m), v(m)〉.

The definition of the stepsize, line (7), yields

〈r(m+1), v(m)〉 = 〈r(m), v(m)〉 − ‖r
(m)‖22

‖v(m)‖2A
〈Av(m), v(m)〉

= 〈r(m), v(m)〉 − 〈r(m), r(m)〉
= 0,

where the last simplification follows from the induction hypothesis for statement b).
Now we discuss the case i < m. From line (9) of the algorithm we get

〈r(m+1), v(i)〉 = 〈r(m) − tmAv(m), v(i)〉
= 〈r(m), v(i)〉

︸ ︷︷ ︸

=0

−tm 〈Av(m), v(i)〉
︸ ︷︷ ︸

=0
= 0,

where we have used the induction hypotheses for statements a) and c), respectively.

b) We show 〈r(m+1), r(m+1)〉 = 〈r(m+1), v(m+1)〉. Using line (12) of the algorithm

〈r(m+1), v(m+1)〉 = 〈r(m+1), r(m+1) + smv(m)〉

17

= 〈r(m+1), r(m+1)〉+ sm 〈r(m+1), v(m)〉
︸ ︷︷ ︸

=0

.

Here we have made use of the statement just proved in a) above.

c) We need to show 〈v(m+1), Av(i)〉 = 0, for 0 ≤ i ≤ m. First we discuss the case
0 ≤ i < m. Line (12) of the algorithm yields

〈v(m+1), Av(i)〉 = 〈r(m+1) + smv(m), Av(i)〉
= 〈r(m+1), Av(i)〉+ sm〈v(m), Av(i)〉.

Next, line (9) of the algorithm implies

Av(k) =
1

tk

(

r(k) − r(k+1)
)

.

Using this formula on the first term of the right-hand side above we have

〈v(m+1), Av(i)〉 =
1

ti
〈r(m+1), r(i) − r(i+1)〉+ sm〈v(m), Av(i)〉

=
1

ti
〈r(m+1, v(i) − si−1v

(i−1) − v(i+1) + siv
(i)〉+ sm〈v(m), Av(i)〉,

where we have used line (12) (together with the understanding that s−1 = 0, v(−1) = 0)
to replace r(i) and r(i+1). We now expand the right-hand side, and get

〈v(m+1), Av(i)〉 =
1

ti







〈r(m+1), v(i)〉
︸ ︷︷ ︸

a)
=0

−si−1 〈r(m+1), v(i−1)〉
︸ ︷︷ ︸

a)
=0

−〈r(m+1), v(i+1)〉
︸ ︷︷ ︸

a)
=0 for i<m

= +si 〈r(m+1), v(i)〉
︸ ︷︷ ︸

a)
=0







+ sm 〈v(m), Av(i)〉
︸ ︷︷ ︸

=0

= 0.

Here we have used the result already proven in a) as well as the induction hypothesis
for c). Note that the third and the fifth terms above are the reason why we have to
now discuss the case i = m separately.

We can proceed as above, but in the end are left with

〈v(m+1), Av(m)〉 = − 1

tm
〈r(m+1), v(m+1)〉+ sm〈v(m), Av(m)〉.

Now, replacing the stepsizes tm and sm using lines (7) and (11), respectively, we get

〈v(m+1), Av(m)〉 = −‖v
(m)‖2A
‖r(m)‖22

〈r(m+1), v(m+1)〉+ ‖r
(m+1)‖22
‖r(m)‖22

〈v(m), Av(m)〉

= −‖v
(m)‖2A
‖r(m)‖22

〈r(m+1), r(m+1)〉+ ‖r
(m+1)‖22
‖r(m)‖22

‖v(m)‖2A
= 0.

18

where, at the end, we have made use of statement b) proved above as well as the
definition of the A-norm of a vector.

d) We need to show r(m+1) = b−Ax(m+1). From line (8) of the algorithm we have

b−Ax(m+1) = b−A(x(m) + tmv(m))
= b−Ax(m) − tmAv(m)

= r(m) − tmAv(m)

by virtue of the induction hypothesis for d). Using line (9) of the algorithm we can
replace tmAv(m) by a difference of residuals and have

b−Ax(m+1) = r(m) − (r(m) − r(m+1)) = r(m+1).

e) We show 〈r(m+1), r(i)〉 = 0 for 0 ≤ i ≤ m. From line (12) of the algorithm (with
s−1 = v(−1) = 0) we get

〈r(m+1), r(i)〉 = 〈r(m+1), v(i) − si−1v
(i−1)〉

= 〈r(m+1), v(i)〉
︸ ︷︷ ︸

a)
=0

−si−1 〈r(m+1), v(i−1)〉
︸ ︷︷ ︸

a)
=0

= 0.

f) We need to show r(m+1) 6= 0. Since A is positive definite, the quadratic form for
v(m+1) 6= 0 satisfies

〈v(m+1), Av(m+1)〉 > 0.

On the other hand, using line (12) of the algorithm,

〈v(m+1), Av(m+1)〉 = 〈r(m+1) + smv(m), Av(m+1)〉
= 〈r(m+1), Av(m+1)〉+ sm 〈v(m), Av(m+1)〉

︸ ︷︷ ︸

c)
=0

.

Thus, r(m+1) cannot be zero (since A is positive definite and v(m+1) 6= 0). ♠
Remark: The algorithms of this section were designed to minimize the quadratic form
q(x) = 〈x, Ax〉 − 2〈x, b〉. We will now show they also minimize ‖e(k)‖A.

Let e(k) = x− x(k), where x is the true solution of the linear system Ax = b. Then

‖e(k)‖2A = 〈e(k), Ae(k)〉
= 〈x− x(k), A(x− x(k))〉
= 〈x(k), Ax(k)〉 − 2〈x(k), Ax

︸︷︷︸

=b

〉+ 〈x, Ax
︸︷︷︸

=b

〉

= q(x(k)) + 〈x, b〉.

Now, since x and b are constant, we see that minimization of q is equivalent to mini-
mization of the A-norm of the error.

Preconditioned CG

We mentioned earlier that the number of iterations required for the conjugate gra-
dient algorithm to converge is proportional to

√

κ2(A). Thus, for poorly conditioned

19

matrices, convergence will be very slow. A commonly used trick is therefore to precon-
dition the problem.

The basic idea can be described as follows. We want to transform the linear system
Ax = b into an equivalent system Âx̂ = b̂, where κ(Â) < κ(A). According to the
comments above this should result in faster convergence.

How do we find Â, x̂, and b̂? Consider a nonsingular n × n matrix S. We can
rewrite

Ax = b ⇐⇒ ST Ax = ST b
⇐⇒ ST AS

︸ ︷︷ ︸

=Â

S−1x
︸ ︷︷ ︸

=x̂

= ST b
︸︷︷︸

=b̂

.

Our choice of S should be such that

SST = Q−1 (29)

with Q a symmetric positive definite matrix called splitting matrix or preconditioner.
This will preserve the symmetry and positive definiteness of the system.

Before discussing any specific preconditioners we consider how this framework af-
fects the CG algorithm. Formally, the conjugate gradient algorithm for the problem
Âx̂ = b̂ is

(1) Input Â, b̂, x̂(0), M , ε

(2) r̂(0) = b̂− Âx̂(0)

(3) v̂(0) = r̂(0)

(4) Output 0, x̂(0), r̂(0)

(5) for k = 0 to M − 1 do

(6) if v̂(k) = 0 then stop

(7) t̂k =
‖r̂(k)‖22
‖v̂(k)‖2

Â

(8) x̂(k+1) = x̂(k) + t̂kv̂
(k)

(9) r̂(k+1) = r̂(k) − t̂kÂv̂(k)

(10) if ‖r̂(k+1)‖2 < ε then stop

(11) ŝk =
‖r̂(k+1)‖22
‖r̂(k)‖22

(12) v̂(k+1) = r̂(k+1) + ŝkv̂
(k)

(13) Output k + 1, x̂(k+1), r̂(k+1)

(14) end

20

Remark: The algorithm is made more efficient if the preconditioning operations are
included directly in the algorithm.

We therefore make the following substitutions.

x̂(k) = S−1x(k),
r̂(k) = b̂− Âx̂(k) = ST b(ST AS)(S−1x(k)) = ST b− ST Ax(k) = ST r(k),

and also define

v̂(k) = S−1v(k),
r̃(k) = Q−1r(k).

Now we can consider how this transforms the algorithm above. Line (2) becomes

r̂(0) = b̂− Âx̂(0) ⇐⇒ ST r(0) = ST b− ST ASS−1x(0)

⇐⇒ r(0) = b−Ax(0),

where we have multiplied by S−T in the last step. For line (3) we have

v̂(0) = r̂(0) ⇐⇒ S−1v(0) = ST r(0)

⇐⇒ v(0) = Q−1r(0),

where we have multiplied by S and used the definition (29) of the preconditioner Q.
Line (7) transforms as follows:

t̂k = ‖r̂(k)‖22/‖v̂(k)‖2
Â

= ‖ST r(k)‖22/‖S−1v(k)‖2ST AS

= 〈ST r(k), ST r(k)〉/〈S−1v(k), ST ASS−1v(k)〉

= 〈r(k), SST
︸ ︷︷ ︸

=Q−1

r(k)〉/〈v(k), Av(k)〉

= 〈r(k), r̃(k)〉/‖v(k)‖2A.

Here we have made use of the easily established fact that for any n × n matrix B
〈x, By〉 = 〈BT x, y〉. Line (8) becomes

x̂(k+1) = x̂(k) + t̂kv̂
(k) ⇐⇒ S−1x(k+1) = S−1x(k) + t̂kS

−1v(k)

⇐⇒ x(k+1) = x(k) + t̂kv
(k),

where we have multiplied by S in the last step. For line (9) we have

r̂(k+1) = r̂(k) − t̂kÂv̂(k) ⇐⇒ ST r(k+1) = ST r(k) − t̂k(S
T AS)S−1v(k)

⇐⇒ r(k+1) = r(k) − t̂kAv(k),

where we have multiplied by S−T . Line (11) transforms as follows:

ŝk = ‖r̂(k+1)‖22/‖r̂(k)‖22

21

= ‖ST r(k+1)‖22/‖ST r(k)‖22

= 〈r(k+1), r̃(k+1)〉/〈r(k), r̃(k)〉.

The last step here requires some of the same manipulations as those used for line (7)
above. Finally, for line (12) we have

v̂(k+1) = r̂(k+1) + ŝkv̂
(k) ⇐⇒ S−1v(k+1) = ST r(k+1) + ŝkS

−1v(k)

⇐⇒ v(k+1) = Q−1r(k+1) + ŝkv
(k)

⇐⇒ v(k+1) = r̃(k+1) + ŝkv
(k),

where we have multiplied by S and used the definition of Q in the penultimate step.
Therefore, the optimized algorithm for the preconditioned conjugate gradient algo-

rithm is

Algorithm (PCG)

Input A, b, x(0), Q, M , ε

r(0) = b−Ax(0)

Solve Qr̃(0) = r(0) for r̃(0)

v(0) = r̃(0)

Output 0, x(0), r(0)

for k = 0 to M − 1 do

if v(k) = 0 then stop

t̂k =
〈r̃(k), r(k)〉
‖v(k)‖2A

x(k+1) = x(k) + t̂kv
(k)

r(k+1) = r(k) − t̂kAv(k)

Solve Qr̃(k+1) = r(k+1) for r̃(k+1)

if 〈r̃(k+1), r(k+1)〉 < ε then

if ‖r(k+1)‖22 < ε then stop

end

ŝk =
〈r̃(k+1), r(k+1)〉
〈r̃(k), r(k)〉

v(k+1) = r̃(k+1) + ŝkv
(k)

Output k + 1, x(k+1), r(k+1)

end

22

Remark: This algorithm requires the additional work need to solve the linear system
Qr̃ = r once per iteration. Therefore we will want to choose Q so that this can be done
easily and efficiently.

The two extreme cases Q = I and Q = A are of no interest. Q = I gives us
the ordinary CG algorithm, whereas Q = A (with (S = A−1/2) leads to the trivial
preconditioned system Âx̂ = b̂⇐⇒ x̂ = b̂ since (using the symmetry of A)

Â = ST AS = A−T/2AT/2A1/2A−1/2 = I.

This may seem useful at first, but to get the solution x we need

x = Sx̂ = A−1/2x̂ = A−1/2b̂
= A−1/2ST b = A−1/2A−T/2b = A−1b,

which is just as complicated as the original problem.
Therefore, Q should be chosen somewhere “in between”. Moreover, we want

1. Q should be symmetric and positive definite.

2. Q should be such that Qr̃ = r can be solved efficiently.

3. Q should approximate A−1 in the sense that ‖I −Q−1A‖ < 1.

Possible choices for Q

If we use the decomposition A = L + D + LT of the symmetric positive definite
matrix A then

• Q = D leads to Jacobi preconditioning,

• Q = L + D leads to Gauss-Seidel preconditioning,

• Q = 1
ω (D + ωL) leads to SOR preconditioning.

Another popular preconditioner is Q = HHT , where H is “close” to L. This method is
referred to as incomplete Cholesky factorization (see the book by Golub and van Loan
for more details).

Remark: The Matlab script PCGDemo.m illustrates the convergence behavior of the
preconditioned conjugate gradient algorithm. The matrix A here is a 1000×1000 sym-
metric positive definite matrix with all zeros except aii = 0.5 +

√
i on the diagonal,

aij = 1 on the sub- and superdiagonal, and aij = 1 on the 100th sub- and superdiag-
onals, i.e., for |i − j| = 100. The right-hand side vector is b = [1, . . . , 1]T . We observe
that the basic CG algorithm converges very slowly, whereas the Jacobi-preconditioned
method converges much faster.

23

An Overview of Iterative Solvers

We end with a decision tree (taken from the book by Demmel) containing rough
guidelines for the use of most of the presently available iterative solvers. Branches to
the left correspond to “No”, to the right to “Yes”. All methods mentioned belong to
the family of Krylov subspace iterations.

A symmetric

A
T available

storage
expensive

GMRES

CGS,
Bi-CGStab,
GMRES(k)

A well-
conditioned

QMR CGN

A definite

A well-
conditioned

MINRES CGN

λmin, λmax

known

CG
CG with
Chebyshev
acceleration

The abbreviations used are

GMRES Generalized Minimum RESidual (1986),

CGS Conjugate Gradient Squared (1989),

Bi-CGStab Stabilized Bi-Conjugate Gradient (1992),

QMR Quasi-Minimal Residual (1991),

CGN Conjugate Gradient applied to the Normal equations,

MINRES MINimum RESidual.

Remark: A lot more details on iterative solvers can be found in the books by Demmel,
Greenbaum, Golub and van Loan, and Trefethen and Bau.

24

