Area under a curve

Objective:

To estimate the approximate area under the graph of a continuous function $f(x)$ on the interval $[\mathrm{a}, \mathrm{b}]$.

Basic approach:

Cover, or tessellate, the region with "tiles" of known area. Total area of tiles gives the required approximation.

To find area under curves, we use rectangular tiles.

Strategy:

[1] Divide the given interval [a,b] into smaller pieces (sub-intervals).
[2] Construct a rectangle on each sub-interval \& "tile" the whole area.
[3] Calculate total area of all the rectangles to get approximate area under $f(x)$.

Example

Approximate the area under $y=f(x)=x^{2}+1$, from $x=0$ to 4 , using 4 rectangles.

Solution:

Four intervals of equal width $\Rightarrow \Delta x=(4.0-0) / 4=1.0$
Find x-values at interval boundaries: $x_{0}=0, x_{1}=1.0, x_{2}=2.0, x_{3}=3.0, x_{4}=4.0$.
To get rectangle heights, find $f(x)$ values at interval boundaries: $f\left(x_{k}\right)=x_{k}^{2}+1$.
$f\left(x_{0}\right)=1.0, f\left(x_{1}\right)=2.0, f\left(x_{2}\right)=5.0, f\left(x_{3}\right)=10.0, f\left(x_{4}\right)=17.0$.

If we use the left end-points: Area $=\left[\sum_{k=0}^{3} f\left(x_{k}\right)\right] \Delta x=(1+2+5+10)^{*} 1.0=18.0$
If we use right end-points: Area $=\left[\sum_{k=1}^{4} f\left(x_{k}\right)\right] \Delta x=(2+5+10+17)^{*} 1.0=34.0$

These are called Riemann sums --

Denoted L_{4} for left end-points with 4 intervals and R_{4} for right end-points with 4 intervals

Question: Suppose you're given a specific problem and you are required to use exactly 10 rectangles. Are there good \& bad choices for how exactly to pick the rectangles?

Example 1: $y=f(x)=x^{2}+1$, from $x=0$ to $x=4$, with 10 equal intervals.

Example 2: $y=f(x)=e^{-x / 2}$ from $x=0$ to $x=4$, with 10 equal intervals.

Example 1 with mid-points

Example 2 with mid-points

Example 3: $y=f(x)=\sin \left(\frac{\pi}{4} x\right)+1$ from $x=0$ to $x=4$, with 10 equal intervals.

Conclusions

(I) If $f(x)$ is monotonically increasing from a to b then:

The left end-points underestimate the true area.
The right end-points overestimate the true area.
(II) If $f(x)$ is monotonically decreasing from a to b then:

The left end-points overestimate the true area.
The right end-points underestimate the true area.
(III) If $f(x)$ is not monotonic on a to b then each type of Riemann sum (left \& right) may underestimate or overestimate the true area -- we cannot predict without knowing the exact form of $f(x)$.

The exact area under a curve

Key points:

* The approximate area, clearly, gets more \& more accurate as the number of rectangles (say, n) increases.
* It follows that the exact area is obtained when n goes to ∞
* In general, the approximate area with n rectangles (of equal width) has the form

$$
A_{n}=\left[\sum_{k=0}^{n-1} f\left(x_{k}\right)\right] \Delta x \quad \text { OR } \quad \bar{A}_{n}=\left[\sum_{k=1}^{n} f\left(x_{k}\right)\right] \Delta x
$$

* Thus, the exact area is:

$$
A=\lim _{n \rightarrow \infty}\left[\sum_{k=0}^{n-1} f\left(x_{k}\right)\right] \Delta x=\lim _{n \rightarrow \infty}\left[\sum_{k=1}^{n} f\left(x_{k}\right)\right] \Delta x
$$

* This comprises the fundamental definition of the definite integral:

Definite integral = Limit of a Riemann sum as the summation goes to ∞

$$
\text { Notation: } \int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty}\left[\sum_{k=1}^{n} f\left(x_{k}^{*}\right)\right] \Delta x \quad\left\{\text { where } \Delta x=\frac{(b-a)}{n}\right\}
$$

$$
\text { Here } x_{k}^{*} \text { denotes any point between } x_{k-1} \text { and } x_{k}
$$

Key point to note: The definite integral of a function is a number, NOT a function.
Recall, the indefinite integral of a function is a function.

Definite integral

Geometric Interpretation:

For any $f(x)$ continuous (and positive) on the interval [a,b], the definite integral $\int_{a}^{b} f(x) d x$ is the (exact) area under the graph of $f(x)$ from a to b.

Question: What if $f(x)$ is not positive?
A: Easy to figure out using the Riemann sum interpretation.
If $A_{n}=\left[\sum_{k=1}^{n} f\left(x_{k}^{*}\right)\right] \Delta x$, what happens when $f\left(x_{k}^{*}\right)$ is negative?

Regions where f is positive contribute positive values to the definite integral. Regions where f is negaitive contribute negaitive values.

The net value of $\int^{b} f(x) d x$ is obtained by adding the positive regions and subtracting the negaitive regions.

Proof strategy for evaluation theorem

Prelude: How can one prove equality between any two entities, i.e., LHS=RHS?
One way: Start with LHS (or RHS) -- then manipulate it and transform it into the other.
E.g., Prove that $(x+1)^{2}=x^{2}+2 x+1$

For the evaluation theorem, we must prove: $\int^{b} f(x) d x=F(b)-F(a)$

$$
\text { where } F(x) \text { is a function that satisfies } \frac{d F}{d x}=f .
$$

Proof strategy:
(1) Start with RHS, which is $F(b)-F(a)$.
(2) Transform this into a summation involving n terms over the interval $[a, b]$.
E.g., $F(b)-F(a)=F(b)+[(p-p)+(q-q)+(r-r)+\ldots]-F(a)$

Select $p=F\left(x_{n-1}\right), \quad q=F\left(x_{n-2}\right), \quad r=F\left(x_{n-3}\right), \ldots ;$ with $b=x_{n}, a=x_{0}$
This gives: $F(b)-F(a)=F\left(x_{n}\right)-F\left(x_{n-1}\right)+F\left(x_{n-1}\right)-F\left(x_{n-2}\right)+\ldots+F\left(x_{1}\right)-F\left(x_{0}\right)$

$$
\therefore \quad F(b)-F(a)=\sum_{k=1}^{n}\left[F\left(x_{k}\right)-F\left(x_{k-1}\right)\right]
$$

(Now we need to figure out a way to bring f into the above summation.)
(3) Use mean value theorem to relate differences in F to its derivative $\frac{d F}{d x}$.
(4) Use the condition that F is required to satisfy: $\frac{d F}{d x}=f$, to bring f into the picture. Take limits as $n \rightarrow \infty$, and we obtain the required LHS. Hence we have shown that LHS=RHS.
[Aside: What does the mean value theorem really say?]

