Exercises on straight lines

* Any two pieces of info. sufficient to find equation of a straight line.
* Every straight line can be written as: $y=m x+b$.
* Every linear equation in 2 variables is a straight line.
(I) How to find the equation of line using slope \& any 1 point on it:

Exercise 60 (pg. 183): Find line that passes through ($-2,-5$) with slope of $3 / 4$.
Strategy: We know $m=3 / 4$, so we get $y=\frac{3}{4} x+b$.
To find b, plug in coordinates of point that it passes through \& solve.
(II) How to find the equation of line using any 2 points on it:

Exercise 70 (pg. 183): Find the line that passes through (-1, 4) and (6, 4).

Strategy: Find slope (of segment) that connects the 2 points, $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
To find b, plug in coordinates of any one point.
You can use the 2nd point to verify your answer.
(III) How to find the equation of line using its x-intercept \& y-intercept: Exercise 84 (pg. 183): Find the line with x-intercept $=2 / 3, y$-intercept $=-2$.

Strategy: Find slope (of segment) that connects the 2 intercepts, $m=\frac{y_{2}-0}{0-x_{1}}$.

We are given the y-intercept, so we can directly plug into $y=m x+b$.

Function graphs: Key things to observe

(1) Zeros: x-values where graph crosses the x-axis.
(2) Increasing/Decreasing intervals: Moving left to right, any x-interval where graph is rising \Rightarrow increasing
x-interval where graph is falling \Rightarrow decreasing
(3) Relative extrema (minimum/maximum):
any x-value where graph reaches a peak \Rightarrow maximum
x-value where graph reaches valley \Rightarrow minimum
A function always switches direction (e.g., incr. to decr.) at such points.
(4) Even \& odd functions:
graph is symmetric with respect to y-axis \Rightarrow even $[f(x)=f(-x)]$ symmetric with respect to origin \Rightarrow odd $\quad[f(x)=-f(-x)]$

Q: What is symmetry with respect to x-axis called?

Some function "Role Models"

Objective: To learn to recognize the graph \& algebraic form of a handful of special functions that shall serve as "role models" for all future functions!

We consider the following specific functions:
(1) $f(x)=1 \quad\left[=x^{0}\right]$
(2) $f(x)=x \quad\left[=x^{1}\right]$
(3) $f(x)=x^{2}$
(4) $f(x)=x^{3}$
(5) $f(x)=\sqrt{x} \quad\left[=x^{1 / 2}\right]$
(6) $f(x)=\frac{1}{x} \quad\left[=x^{-1}\right]$
(7) $f(x)=|x|$

For each case, try to remember the following specific attributes:

* Graph shape
* Domain \& range (e.g., is it always positive, always negative, or both)
* Where is the graph increasing \& where is it decreasing.
* What kind of symmetry, if any.
(1) $f(x)=1$: Constant case:

* Graph is Horizontal straight line. $y=1$ for all values of x.
* Domain is all reals. Range is $\mathrm{y}=1$.
* Symmetry about y-axis (i.e., even function).
(2) $f(x)=x$: Linear case:

* Graph is straight line with positive slope=1.
* Domain \& range include all reals.
* Increases on ($-\infty, \infty$)
* Symmetry about origin (i.e., odd function)
(3) $f(x)=x^{2}$: Quadratic case:

* Graph is parabola - opens up - nose at origin.
* Domain: all reals; Range: only positive reals.
* Decreases $(-\infty, 0)$; increases $(0, \infty)$
* Symmetry about y-axis (i.e., even function).
(4) $f(x)=x^{3}$: Cubic case:

* Graph shape is like a "stretched out" N.
* Domain \& Range: all reals.
* Increases on ($-\infty, \infty$)
* Symmetry about origin (i.e., odd function).
(5) $f(x)=\sqrt{ } x$: Square root case:

(6) $f(x)=1 / x$: Reciprocal case:

* Graph like "bowls" in 1st and 3rd quadrants.
* Domain \& Range: all reals except 0.
* Decreases: $(-\infty, 0)$, decreases: $(0, \infty)$
* Symmetry: about origin (odd function)
(7) $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$: Absolute value case:

* Graph like a V-shape - base at origin.
* Domain: all reals. Range: only + reals.
* Decreases: $(-\infty, 0)$ Increases: $(0, \infty)$
* Symmetry: about y-axis (even function)

How to move and/or stretch functions

Objective: To learn the effect of certain common algebraic operations on the graphs of functions.

We look at 3 types of effects on functions:
(1) How to move the graph up/down or left/right like a rigid body
(2) How to create mirror reflections of graphs
(3) How to shrink or stretch the graph horizontally or vertically
[View powerpoints from textbook website for good illustration of concept.]

Summary of key results

Translation

(1) If you add (or subtract) a constant c to $f(x)$, you move it up (or down).
e.g., $x^{3}-2$ is just x^{3} shifted down by 2 units
$|x-2|+3$ is just $|x-2|$ shifted up by 3 units
(2) If you replace every x by $x+c$ or $x-c$ you shift the graph left or right.
e.g., $(x-2)^{3}$ is just x^{3} shifted right by 2 units
$|x+2|$ is just $|x|$ shifted left by 2 units

Reflection

(1) If you flip the sign of every term in $f(x)$, you get its reflection about x-axis.
e.g., $x^{3}-2$ is just the reflection of $-x^{3}+2$ about the x-axis
$-|x+2|$ is just the reflection of $|x+2|$ about the x-axis
(2) If you replace every x by $-x$ you get the graph's reflection about the y-axis.
e.g., $x^{3}-2$ is just the reflection of $-x^{3}-2$ about the y-axis
$|x+2|$ is just the reflection of $|-x+2|$ about the y-axis

Stretching \& shrinking

(1) If you multiply $f(x)$ by a constant c it stretches or compresses vertically.
e.g., $4 x^{3}$ is just the graph of x^{3} stretched vertically (in y-direction)
$-|x+2|$ is just the reflection of $|x+2|$ about the x-axis
(2) If you replace every x by $\mathrm{c} x$ it stretches or compresses horizontally.
e.g., $|4 x+2|$ is just $|x+2|$ compressed horizontally

Inverses of functions

Objective: To understand what is the inverse of a function \& to learn how to find it.

Summary of key ideas

* An inverse is very much like working with a function backwards -- i.e., if $y=f(x)$, we look for a relationship that takes y as input and gives back x.
* Many functions have inverse functions, but not all do.
* The inverse relationship works both ways when a function does have an inverse. i.e., if $g(x)$ is the inverse of $f(x)$, then $f(x)$ is the inverse of $g(x)$.
* The domain \& range get reversed -- if $g(x)$ is the inverse of $f(x)$, then the domain of g is the range of f and vice versa.
* Composition result: Since the inverse function essentially "undoes" the effect of the orginal function, when we use them back-to-back x remains unchanged. That is: $f(g(x))=x$ and $g(f(x))=x$.
* Existence of inverse: An inverse exists for any function only provided it is one-to-one. This means the function must not only be single-valued, but also may not have multiple x-values that give the same y-value.
e.g., $\quad f(x)=x^{2}$ does not have an inverse since x and $-x$ give the same y-value.
* Notation: The inverse of any function $f(x)$ is written as $f^{-1}(x)$.

