Exercises on straight lines

- * Any two pieces of info. sufficient to find equation of a straight line.
- * Every straight line can be written as: y = mx + b.
- * Every linear equation in 2 variables is a straight line.

(I) How to find the equation of line using slope & any 1 point on it:

Exercise 60 (pg. 183): Find line that passes through (-2, -5) with slope of 3/4.

<u>Strategy</u>: We know m = 3/4, so we get $y = \frac{3}{4}x + b$.

To find *b*, plug in coordinates of point that it passes through & solve.

(II) How to find the equation of line using any 2 points on it:

Exercise 70 (pg. 183): Find the line that passes through (-1, 4) and (6, 4).

<u>Strategy</u>: Find slope (of segment) that connects the 2 points, $m = \frac{y_2 - y_1}{x_2 - x_1}$.

To find *b*, plug in coordinates of any one point.

You can use the 2nd point to verify your answer.

(III) How to find the equation of line using its x-intercept & y-intercept:

<u>Exercise 84</u> (pg. 183): Find the line with *x*-intercept = 2/3, *y*-intercept = -2.

<u>Strategy</u>: Find slope (of segment) that connects the 2 intercepts, $m = \frac{y_2 - 0}{0 - x_1}$.

We are given the *y*-intercept, so we can directly plug into y = mx + b.

Function graphs: Key things to observe

- (1) **Zeros:** *x*-values where graph crosses the *x*-axis.
- (2) Increasing/Decreasing intervals: Moving left to right,

any *x*-interval where graph is rising \Rightarrow increasing *x*-interval where graph is falling \Rightarrow decreasing

(3) Relative extrema (minimum/maximum):

any *x*-value where graph reaches a peak \Rightarrow maximum *x*-value where graph reaches valley \Rightarrow minimum

A function always switches direction (e.g., incr. to decr.) at such points.

(4) Even & odd functions:

graph is symmetric with respect to *y*-axis \Rightarrow even [f(x) = f(-x)]

symmetric with respect to origin \Rightarrow odd [f(x) = -f(-x)]

Q: What is symmetry with respect to *x*-axis called?

Some function "Role Models"

Objective: To learn to recognize the graph & algebraic form of a handful of special functions that shall serve as "role models" for all future functions!

We consider the following specific functions:

- (1) f(x) = 1 [= x^0]
- (2) f(x) = x [= x^1]
- (3) $f(x) = x^2$
- (4) $f(x) = x^3$
- (5) $f(x) = \sqrt{x} \quad [=x^{1/2}]$
- (6) $f(x) = \frac{1}{x}$ [= x^{-1}]
- $(7) \quad f(x) = |x|$

For each case, try to remember the following specific attributes:

- * Graph shape
- * Domain & range (e.g., is it always positive, always negative, or both)
- * Where is the graph increasing & where is it decreasing.
- * What kind of symmetry, if any.

(1) f (x) = 1: Constant case:

- * Graph is Horizontal straight line. y=1 for all values of x.
- * Domain is all reals. Range is y=1.
- * Symmetry about y-axis (i.e., even function).

(2) f (x) = x: Linear case:

- * Graph is straight line with positive slope=1.
- * Domain & range include all reals.
- * Increases on $(-\infty, \infty)$
- * Symmetry about origin (i.e., odd function)

(3) f (x) = x²: Quadratic case:

- * Graph is parabola opens up nose at origin.
- * Domain: all reals; Range: only positive reals.
- * Decreases (- ∞ ,0); increases (0, ∞)
- * Symmetry about y-axis (i.e., even function).

(4) f (x) = x³: Cubic case:

- * Graph shape is like a "stretched out" N.
- * Domain & Range: all reals.
- * Increases on $(-\infty, \infty)$
- * Symmetry about origin (i.e., odd function).

(5) f (x) = \sqrt{x} : Square root case:

* Graph looks like a slowly ascending airplane! Starts from origin.

* Domain & Range: only positive reals.

- * Increases on $(0, \infty)$
- * Symmetry: None.

(6) f (x) = 1/ x: Reciprocal case:

- * Graph like "bowls" in 1st and 3rd quadrants.
- * Domain & Range: all reals except 0.
- * Decreases: $(-\infty, 0)$, decreases: $(0, \infty)$
- * Symmetry: about origin (odd function)

(7) f (x) = |x|: Absolute value case:

- * Graph like a V-shape base at origin.
- * Domain: all reals. Range: only + reals.
- * Decreases: $(-\infty, 0)$ Increases: $(0, \infty)$
- * Symmetry: about y-axis (even function)

How to move and/or stretch functions

Objective: To learn the effect of certain common algebraic operations on the graphs of functions.

We look at 3 types of effects on functions:

- (1) How to move the graph up/down or left/right like a rigid body
- (2) How to create mirror reflections of graphs
- (3) How to shrink or stretch the graph horizontally or vertically

[View powerpoints from textbook website for good illustration of concept.]

Summary of key results

Translation

(1) If you add (or subtract) a constant c to f(x), you move it up (or down).

e.g., x^3 -2 is just x^3 shifted down by 2 units

|x-2| + 3 is just |x-2| shifted up by 3 units

(2) If you replace every x by x+c or x-c you shift the graph left or right.

e.g., $(x-2)^3$ is just x^3 shifted right by 2 units

|x+2| is just |x| shifted left by 2 units

Reflection

(1) If you flip the sign of every term in f(x), you get its reflection about *x*-axis.

e.g., $x^{3}-2$ is just the reflection of $-x^{3}+2$ about the *x*-axis

- |x+2| is just the reflection of |x+2| about the *x*-axis

(2) If you replace every x by - x you get the graph's reflection about the y-axis.

e.g., x^{3} -2 is just the reflection of $-x^{3}$ -2 about the y-axis

|x+2| is just the reflection of |-x+2| about the y-axis

Stretching & shrinking

(1) If you multiply f(x) by a constant c it stretches or compresses vertically.

e.g., $4x^3$ is just the graph of x^3 stretched vertically (in *y*-direction)

- |x+2| is just the reflection of |x+2| about the *x*-axis

(2) If you replace every x by c x it stretches or compresses horizontally.

e.g., |4x+2| is just |x+2| compressed horizontally

Inverses of functions

Objective: To understand what is the inverse of a function & to learn how to find it.

Summary of key ideas

* An inverse is very much like working with a function backwards -- i.e., if

y = f(x), we look for a relationship that takes y as input and gives back x.

* Many functions have inverse functions, but not all do.

* The inverse relationship works both ways when a function does have an inverse. i.e., if g(x) is the inverse of f(x), then f(x) is the inverse of g(x).

* The domain & range get reversed -- if g(x) is the inverse of f(x), then the domain of g is the range of f and vice versa.

* Composition result: Since the inverse function essentially "undoes" the effect of the orginal function, when we use them back-to-back *x* remains unchanged. That is: f(g(x)) = x and g(f(x)) = x.

* Existence of inverse: An inverse exists for any function only provided it is <u>one-to-one</u>. This means the function must not only be single-valued, but also may not have multiple *x*-values that give the same *y*-value.

e.g., $f(x) = x^2$ does not have an inverse since x and -x give the same y-value.

* Notation: The inverse of any function f(x) is written as $f^{-1}(x)$.