Algebraic strategies for 1-variable equations

We first consider linear and quadratic equation types.
(1) Linear

* This is the easiest case.
* Any linear equation can be rearranged to look like: $a x+b=0$ (where a and b are some numbers).
E.g., $10=4-3 x$ is the same as $3 x+6=0$ OR $0=-6-3 x$
* Can readily solve for $x: \quad x=-b / a$

Quadratic

* Any quadratic can be rearranged to look like: $a x^{2}+b x+c=0$ (where a, b and c are numbers).
* Some quadratics are much easier to solve without re-writing in this form (e.g., by factoring, or other short-cuts).
* However, every quadratic can be solved if we write it in the above form, by using the famous "quadratic formula" which is

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

* There are very few things in math I recommend memorizing -- the quadratic formula is one of them!

Solving other 1-variable equations

Other equation types:
(1) Polynomials. [Powers of x combined linearly: $2 x^{6}-x^{5}-3 x^{4}+12 x=0$]
(2) Rationals. [Ratio of 2 polynomials: $\frac{x}{2 x^{6}-x^{5}-3 x^{4}+12 x}=0$]
(3) Equations involving square roots or other roots (i.e., radicals).
(4) Equations involving absolute values.

Background notes:

* Only linears and quadratics have guaranteed solution methods.
* For other equations, we try to isolate the unknown using one or more of the standard algebraic manipulations.
* Graphing software and/or calculator is extremely useful here.

Polynomials: Key strategies to try.
(1) Factoring (sometimes, repeatedly in 2 or 3 stages)
(2) Making the equation "look like a quadratic."

Rationals:

* By definition, these are ratios, which means fractions that contain variables!
* Strategies involve the standard tricks that we play with fractions, such as finding common denominators, cross-multiplying \&/or multiplying through by a common factor, etc.

Very important algebraic fact:

An equation in fraction form such as

$$
\frac{a}{b}=0 \quad(a \text { and } b \text { being any algebraic expressions })
$$

necessarily requires that $a=0$ for the equation to be true.
Q: Can you see why this is so? Hint: Look at it as a product: $a * \frac{1}{b}=0$

* This powerful result is frequently used when solving rational equations.

Square roots \& other radicals: Key strategies to try.
(1) Isolate the square-root term on 1 side \& square both sides.
(If it is any other type of root, follow very similar strategy.)
(2) In some cases rationalization may help.

What is rationalization?

* It is very much like the "complex conjugate" idea.
* Makes use of the very versatile identity: $(x+y)(x-y)=x^{2}-y^{2}$
* Learn to recognize this in various other incarnations: (some examples)

$$
\begin{array}{ll}
(1+x)(1-x)=1-x^{2} & \left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right)=x^{4}-y^{4} \\
(1+\sqrt{x})(1-\sqrt{x})=1-x & \left(\frac{1}{\sqrt{x}}+1\right)\left(\frac{1}{\sqrt{x}}-1\right)=\frac{1}{x}-1 \\
(\sqrt{x}+\sqrt{y})(\sqrt{x}-\sqrt{y})=x-y &
\end{array}
$$

* These are conjugate factors.
* Rationalization involves the clever use of conjugates to simplify algebraic expressions containing square roots in fractions.

Absolute values in equations:
The main point to remember here is that absolute value equations are best viewed as 2 separate equations.

How?
Suppose: $|8-3 x|=4$
This really means two things: $8-3 x=4$ and $8-3 x=-4$
Therefore, we must solve each equation independently.

