Concept of Limit

* The limit of $f(x)$ as $x \rightarrow a$ is "sort of like" the function value at $x=a$, i.e., $f(a)$.
* In fact, we often find that for many values of a, the limit is equal to $f(a)$.
* But ... this similarity is delusional!

Conceptually, the limit of $f(x)$ as $x \rightarrow a$ is unrelated to $f(a)$.

* Best way to understand limits is to look at graph of $f(x)$.
* Recipe to find the limit as $x \rightarrow a$:
(1) "Get on" the graph somewhere near the point $x=a$.
(2) Head towards $x=a$, and note the y-value when you reach $x=a$.
(3) Repeat steps (1) and (2) by approaching from the opposite side.
(4) If you get the same y-value, this is the limit.

Example1: $f(x)=x+2$
Example2: $f(x)=\frac{x^{2}-4}{x-2}$
For both examples, find the limit of $f(x)$ as $x \rightarrow 2$.

At $x=2$, the function value and limit value are the same:
$\lim _{x \rightarrow 2} f(x)=4=f(2)$

At $x=2$, function value and limit value not the same:

$$
\lim _{x \rightarrow 2} f(x)=4 . \text { But } f(2)=\text { undefined. }
$$

Think: Now, compare function value and limit value at some other point, say, $x=1$.

Moral of the Story:

* The limit concept is inherently "neighborhood" based.
* You have to look at the function's behavior in the neighborhood of $x=a$.
* You must ignore the function value at the point $x=a$ itself.

Function value at $\boldsymbol{x}=\boldsymbol{a}$	Limit value of $f(\boldsymbol{x})$ as \boldsymbol{x} approaches \boldsymbol{a}
Only depends on $f(a)$.	Does not depend upon $f(a)$.
Does not depend upon neighboring values.	Only depends on neighboring values.
May exist even if $\lim _{x \rightarrow a} f(x)$ does not exist.	May exist even if $f(a)$ does not exist.

Left limit and right limit

* Left limit: Only look at graph to the left of the point of interest $(x=a)$.

Ignore graph to the right.
"Get on" the graph \& approach $x=a$ from the left.
The y -value when you reach $x=a$ is the left limit.
Basically we're saying, only consider the neighborhood to the left.

* Right limit: Only look at graph to the right of the point of interest $(x=a)$.

Ignore graph to the left.
"Get on" the graph \& approach $x=a$ from the right.
The y -value when you reach $x=a$ is the right limit.
Basically, only consider the neighborhood to the right.

* Example: In Example2 on the previous pages, consider the point $x=2$.

Left limit (LL): $\lim _{x \rightarrow 2^{-}} f(x)=4$
Right limit (RL): $\lim _{x \rightarrow 2^{+}} f(x)=4$
Think: Are the LL and RL the same always? Why, or why not?

Example3: (Postal rates)

In 2006 the rate R of first class postage (in cents) as a function of the weight w (in ounces), was given by:

$$
R(w)= \begin{cases}0.39, & \text { if } 0<w \leq 1 \\ 0.63, & \text { if } 1<w \leq 2 \\ 0.87, & \text { if } 2<w \leq 3\end{cases}
$$

Find $\quad \lim _{w \rightarrow 1} R(w), \quad \lim _{w \rightarrow 1^{-}} R(w), \quad \lim _{w \rightarrow 1^{+}} R(w)$.
Find $\quad \lim _{w \rightarrow 1.5^{2}} R(w), \quad \lim _{w \rightarrow 1.5^{-}} R(w), \quad \lim _{w \rightarrow 1.5^{+}} R(w)$.

Example4: Consider the function $g(t)$ defined in the domain $\quad-1 \leq t<\infty$:

Consider three separate points $t=a$, with $a=0, a=1, a=2$. For each point, answer the following questions:
(1) What is $g(a)$?
(2) What is $\lim _{t \rightarrow a^{-}} g(t), \lim _{t \rightarrow a^{+}} g(t), \lim _{t \rightarrow a} g(t)$?
(3) Is the function continuous at $t=a$?

Example: Find $\lim _{x \rightarrow-3} \frac{x^{2}+x-6}{x+3}$.

After algebra

Example: Find $\quad \lim _{x \rightarrow 1}\left(1+\frac{1}{x-2}\right)\left(\frac{2}{1-x^{2}}\right)$.

$$
\begin{gathered}
\quad \frac{\text { Before algebra }}{y=\left(1+\frac{1}{x-2}\right)\left(\frac{2}{1-x^{2}}\right)} \\
\\
=1
\end{gathered}
$$

$$
y=\frac{\text { After algebra }}{\left[\frac{-2}{(x-2)(1+x)}\right]}
$$

Example: Find $\lim _{x \rightarrow 0} \frac{x-2}{x^{2}-2 x}$.

Example: Find $\lim _{t \rightarrow 1} \frac{\sqrt{t+3}-2}{t-1}$.

