Concept of Limit

* The limit of f(x) as $x \to a$ is "sort of like" the function value at x = a, i.e., f(a).

* In fact, we often find that for many values of a, the limit is equal to f(a).

* But ... this similarity is delusional!

Conceptually, the limit of f(x) as $x \rightarrow a$ is **unrelated** to f(a).

* Best way to understand limits is to look at graph of f(x).

* Recipe to find the limit as $x \rightarrow a$:

- (1) "Get on" the graph somewhere near the point x = a.
- (2) Head towards x = a, and note the y-value when you reach x = a.
- (3) Repeat steps (1) and (2) by approaching from the opposite side.
- (4) If you get the same y-value, this is the limit.

Example1: f(x) = x+2For both examples, find the limit of f(x) as $x \to 2$. Example2: $f(x) = \frac{x^2 - 4}{x-2}$

At x=2, the function value and limit value are the same: $\lim_{x \to 2} f(x) = 4 = f(2)$

At x=2, function value and limit value not the same: $\lim_{x \to 2} f(x) = 4.$ But f(2) = undefined.

<u>Think</u>: Now, compare function value and limit value at some other point, say, *x*=1.

Moral of the Story:

- * The limit concept is inherently "neighborhood" based.
- * You have to look at the function's behavior in the neighborhood of x = a.
- * You must ignore the function value at the point x = a itself.

Function value at $x = a$	Limit value of <i>f</i> (<i>x</i>) as <i>x</i> approaches <i>a</i>
Only depends on $f(a)$.	Does not depend upon $f(a)$.
Does not depend upon neighboring values.	Only depends on neighboring values.
May exist even if $\lim_{x \to a} f(x)$ does not exist.	May exist even if $f(a)$ does not exist.

Left limit and right limit

* Left limit: Only look at graph to the left of the point of interest (x = a). Ignore graph to the right.

"Get on" the graph & approach x = a from the left.

The y-value when you reach x = a is the left limit.

Basically we're saying, only consider the neighborhood to the left.

* **Right limit**: Only look at graph to the right of the point of interest (x = a). Ignore graph to the left.

"Get on" the graph & approach x = a from the right.

The y-value when you reach x = a is the right limit.

Basically, only consider the neighborhood to the right.

* **Example**: In Example2 on the previous pages, consider the point x=2.

Left limit (LL): $\lim_{x \to 2^{-}} f(x) = 4$ Right limit (RL): $\lim_{x \to 2^{+}} f(x) = 4$

Think: Are the LL and RL the same always? Why, or why not?

Example3: (Postal rates)

In 2006 the rate R of first class postage (in cents) as a function of the weight w (in ounces), was given by:

Example4: Consider the function g(t) defined in the domain $-1 \le t < \infty$: g(t)

Consider three separate points t = a, with a=0, a=1, a=2. For each point, answer the following questions:

- (1) What is g(a)?
- (2) What is $\lim_{t \to a^-} g(t)$, $\lim_{t \to a^+} g(t)$, $\lim_{t \to a} g(t)$?
- (3) Is the function continuous at t = a?

Example: Find $\lim_{x \to -3} \frac{x^2 + x - 6}{x + 3}.$

Before algebra

After algebra

 $\lim_{x \to 1} \left(1 + \frac{1}{x - 2} \right) \left(\frac{2}{1 - x^2} \right).$ Example: Find

Before algebra

Example: Find $\lim_{r \to 0}$

Before algebra $y = \left(\frac{x-2}{x^2-2x}\right)^{5}$

Example: Find
$$\lim_{t \to 1}$$

$$n_{1} \frac{\sqrt{t+3}-2}{t-1}$$

Before algebra

After algebra

