General template for writing proofs in set theory

Proof:

{* State the proof strategy you will use - direct, by contradiction, by contrapositive, etc. If proving by contrapositive, restate the the proposition as you will prove it}

{* State your hypotheses}

{* State your contradictory supposition, or state what you propose to show}

{* *Pick a suitable element to start your element argument*}

{* Use logic, together with hypotheses, to trace your element's properties}

{* *Tie your results together in a concluding statement, that states what you have shown*}

Some examples

Exercise 2.3.6: Let A, B, and X be sets. If $(A \cup B) \subseteq X$ and $(X - B) \subseteq (X - A)$, then $A \subseteq B$.

Solution: We will use a proof by contradiction.

- {* State your hypotheses}
- (1) Let A, B, and X be sets such that $(A \cup B) \subseteq X$ and $(X B) \subseteq (X A)$.
- {* State your contradictory supposition}
- (2) By way of contradiction, suppose $A \nsubseteq B$.
- {* *Pick a suitable element to start your element argument*}
- (3) Since $A \not\subseteq B$, there exists $p \in A$ such that $p \notin B$. [by negating definition of subset]
- {* Use logic, together with hypotheses, to trace your element's properties}
- (4) Because $p \in A$, we know $p \in A \cup B$. [by definition of union]
- (5) By our hypotheses, this implies $p \in X$. [because $(A \cup B) \subseteq X$]
- (6) Lines (5) and (3) imply $p \in X$ and $p \notin B$. Thus $p \in X B$. [definition of complement]
- (7) Since $p \in X B$, we conclude $p \in X A$. [since $(X B) \subseteq (X A)$ by hypothesis]
- (8) $p \in X A \Rightarrow p \in X$ and $p \notin A$. [definition of complement]
- (9) This contradicts line (3): $p \in A$ and $p \notin A$.
- {* *Tie your results together in a concluding statement*}
- (10) Therefore, we have shown $A \nsubseteq B$ leads to a contradiction. It follows that if $(A \cup B) \subseteq X$ and $(X B) \subseteq (X A)$, then $A \subseteq B$.

Exercise 2.4.2: Let A, B, and X be sets. Then $(X - A) \cup (X - B) \subseteq X - (A \cap B)$. Solution: We will use a direct proof.

- {* State your hypotheses}
- (1) Let A, B, and X be sets.
- {* State what you propose to prove}
- (2) I will show that $(X A) \cup (X B) \subseteq X (A \cap B)$.
- {* *Pick a suitable element to start your element argument*}
- (3) Let q be any element of the set $(X A) \cup (X B)$.
- This means we're assumming it is non-empty otherwise there is nothing to prove!
- $\{* Use logic, together with hypotheses, to trace your element's properties \}$

(4) $q \in (X - A) \cup (X - B) \Rightarrow q \in (X - A)$ or $q \in (X - B)$. [by definition of union] (5) We consider each of the true resultilities concentrally

- (5) We consider each of the two possibilities separately
 - $(5.1) \quad q \in (X A).$
 - (5.1.1) $q \in (X A) \Rightarrow q \in X$ and $q \notin A$. [definition of complement]
 - (5.1.2) $q \notin A \Rightarrow q \notin (A \cap B)$. [by negating definition of intersection]
 - (5.1.3) From (5.1.1) and (5.1.2): $q \in X$ and $q \notin (A \cap B)$. Therefore, $q \in X - (A \cap B)$. [by definition of complement]
 - (5.2) $q \in (X B)$. By similar argument to (5.1) we have

(5.2.1)
$$q \in X$$
 and $q \notin B \Rightarrow q \notin (A \cap B) \Rightarrow q \in X - (A \cap B)$.

- {* *Tie your results together in a concluding statement*}
- (6) Therefore, we've shown $q \in (X A) \cup (X B) \Rightarrow q \in X (A \cap B)$ for every case. It follows from the definition of subset that $(X - A) \cup (X - B) \subseteq X - (A \cap B)$.

Exercise 2.6.3: For all sets A, B, C and D, if $A \subseteq C$ and $B \subseteq D$ then $(A \cup B) \subseteq (C \cup D)$. Solution: We will use a direct proof.

- { * State your hypotheses}
- (1) Let A, B, C, and D be sets such that $A \subseteq C$ and $B \subseteq D$.
- {* State what you propose to prove}
- (2) I will show that $(A \cup B) \subseteq (C \cup D)$.
- {* *Pick a suitable element to start your element argument*}
- (3) Let s be any element of the set $A \cup B$ (assumed non-empty otherwise proof is vacuous).
- {* Use logic, together with hypotheses, to trace your element's properties }
- (4) $s \in (A \cup B) \Rightarrow s \in A \text{ or } s \in B.$ [by definition of union]
- (5) We consider each of the two possibilities separately

```
(5.1) Suppose s \in A.
```

- (5.1.1) Then $s \in C$. [by hypothesis $A \subseteq C$, and by definition of subset]
- (5.1.2) This implies $s \in (C \cup D)$. [by definition of union]
- (5.2) Suppose $s \in B$. By similar argument to (5.1) we have
- (5.2.1) $s \in D$ because $B \subseteq D$, which implies $s \in (D \cup C)$ by definition of union.
- {* Tie your results together in a concluding statement}
- (6) Therefore, we've shown $s \in (A \cup B) \Rightarrow s \in (C \cup D)$ for every case. It follows from the definition of subset that $(A \cup B) \subseteq (C \cup D)$.