(I) Negate the following:

1. For all real numbers $r, r^{2} \geq 0$.
2. For all real numbers $p \in S$, if p is prime then $p \in U$.
3. There exists a rational number q whose square is 2 .
4. There exists an integer n which, when added to 3 , yields -1 .
5. For each real number r there is a real number s such that $r s=1$.
6. If n is an even integer, then n^{2} is an even integer.
7. If $a<b$ and c is positive, then $a c<b c$.
8. If $x>0$ or $x<0$, then $x^{2}>0$.
9. If $a<b$, then there exists a c such that $a<c<b$.
10. If m and n are positive integers, then so are $m+n$ and $m n$.
11. Given positive rational numbers y and z, there is a positive integer n such that $n y>z$.
12. Given cuts α and β, the equation $\alpha=\beta x$ has a unique solution for x.

(II) Write the contrapositive of each of the following statements:

1. If n is an even integer, then n^{2} is an even integer.
2. If $a<b$ and c is positive, then $a c<b c$.

3 . If $x>0$ or $x<0$, then $x^{2}>0$.
4. If $a<b$, then there exists a c such that $a<c<b$.
5. If m and n are positive integers, then so are $m+n$ and $m n$.
(III) Rewrite each of the following as an implication, and then write its contrapositive:

1. For all real numbers $r, r^{2} \geq 0$.
2. For all real numbers $p \in S$, if p is prime then $p \in U$.
3. For each real number r there is a real number s such that $r s=1$.
4. Given positive rational numbers y and z, there is a positive integer n such that $n y>z$.
5. Given cuts α and β, the equation $\alpha=\beta x$ has a unique solution for x.

Selected Solutions

(I) Negate the following:

2. For all real numbers $p \in S$, if p is prime then $p \in U$.

Solution: There exists a prime number $p \in S$ such that $p \notin U$.
4. There exists an integer n which, when added to 3 , yields -1 .

Solution: For every integer $n, n+3$ does not equal -1 .
OR $n+3$ does not equal -1 for any integer n.
6. If n is an even integer, then n^{2} is an even integer.

Solution: There exists an even integer n such that n^{2} is an odd integer.
8. If $x>0$ or $x<0$, then $x^{2}>0$.

Solution: There exists $x \neq 0$ such that $x^{2} \leq 0$.
OR There exists x such that $x>0$ or $x<0$, and $x^{2} \leq 0$.
10. If m and n are positive integers, then so are $m+n$ and $m n$.

Solution: There exist positive integers m and n such that either $m+n$ or $m n$ is not a positive integer.
12. Given cuts α and β, the equation $\alpha=\beta x$ has a unique solution for x.

Solution: There exist cuts α and β such that the equation $\alpha=\beta x$ does not have a unique solution for x.

(II) Write the contrapositive of each of the following statements:

2. If $a<b$ and c is positive, then $a c<b c$.

Solution: If $a c \geq b c$, then either $a \geq b$ or c is non-positive.
4. If $a<b$, then there exists a c such that $a<c<b$.

Solution: If for all c either $c \leq a$ or $c \geq b$, then $a \geq b$.
OR If there is no c such that $a<c<b$, then $a \geq b$.
(III) Rewrite each of the following as an implication, and then write its contrapositive:
2. For all real numbers $p \in S$, if p is prime, then $p \in U$.

Solution: If the real number $p \in S$ is prime, then $p \in U$.
Contrapositive: If the real number p is not in U, then p is not in S or it is not a prime number.
4. Given positive rational numbers y and z, there is a positive integer n such that $n y>z$. Solution: If y and z are positive rational numbers, then there is a positive integer n such that $n y>z$.
Contrapositive: If for all positive integers $n, n y \leq z$, then either y or z is not a positive rational number.

