The Chain Rule

Objective: To differentiate more general, complicated functions.

Key idea

* Treat complicated functions as composites assembled from simpler functions.
* Examples:
(1) $f(x)=\left(x^{3}-2 x^{2}+\frac{1}{x}\right)^{10} \longleftrightarrow f(u)=u^{10}, u(x)=\left(x^{3}-2 x^{2}+\frac{1}{x}\right)$
(2) $g(x)=e^{\left(x^{3}-2 x^{2}+\frac{1}{x}\right)} \longleftrightarrow g(u)=e^{u}, u(x)=\left(x^{3}-2 x^{2}+\frac{1}{x}\right)$
(3) $\quad r(t)=\ln \left(t^{2}+5 t\right) \longleftrightarrow r(u)=\ln (u), u(t)=\left(t^{2}+5 t\right)$
(4)

$$
g(t)=\sqrt[5]{\ln \left(1-t^{5}\right)} \longleftrightarrow g(u)=\sqrt[5]{u}, u(v)=\ln (v), v(t)=\left(1-t^{5}\right)
$$

* It is now important to distinguish between differentiation variables.

In example (1): $\quad \frac{d f}{d x}$ is not the same as $\quad \frac{d f}{d u}$ or $\frac{d u}{d x}$ In example (4): $\quad \frac{d g}{d t}$ is different from $\quad \frac{d g}{d u}, \frac{d u}{d v}$ and $\frac{d v}{d t}$

* Thus, the prime notation can become very misleading or confusing here.

Recall the general power rule ("baby" chain rule):
If your function has the form $f(x)=u^{n}$ then its derivative is

$$
\frac{d f}{d x}=n u^{n-1} \times \frac{d u}{d x}
$$

The full chain rule says:

If you write (or imagine) the function $\mathrm{f}(\mathrm{x})$ as a composite of the form $\mathrm{f}(\mathrm{u}) \cdot \mathrm{u}(\mathrm{x})$, then its derivative with respect to x is

$$
\frac{d f}{d x}=\frac{d f}{d u} \times \frac{d u}{d x}
$$

Recipe for applying the full chain rule to find $\mathrm{df} / \mathrm{dx}$:

$$
\left\{\text { e.g., let } f(x)=e^{\left(x^{3}-2 x^{2}\right)}\right\}
$$

Step 1: Simplify the function by writing it as composite of $u(x)$.

$$
\left\{\text { e.g., } \operatorname{let} f(u)=e^{u}, \quad u(x)=\left(x^{3}-2 x^{2}\right)\right\}
$$

Step 2: Differentiate $f(u)$ with respect to u, and $u(x)$ with respect to x, to get

$$
\frac{d f}{d u} \text { and } \frac{d u}{d x} . \quad\left\{\text { e.g., } \quad \frac{d f}{d u}=e^{u}, \quad \frac{d u}{d x}=\left(3 x^{2}-4 x\right)\right\}
$$

Step 3: Get df/dx from chain rule: $\quad \frac{d f}{d x}=\frac{d f}{d u} \times \frac{d u}{d x} . \quad\left\{\right.$ e.g., $\left.\frac{d f}{d x}=e^{u}\left(3 x^{2}-4 x\right)\right\}$
Step 4: Replace "u" by original stuff. $\quad\left\{\right.$ e.g., $\left.\frac{d f}{d x}=e^{\left(x^{3}-2 x^{2}\right)}\left[3 x^{2}-4 x\right]\right\}$

Implicit Differentiation Preliminaries

What are implicit functions?

* Examples:
(A) $\mathrm{y}^{2}-\mathrm{x}=0$;
(B) $\mathrm{xe}^{\mathrm{y}}-\mathrm{y}=\mathrm{x}^{2}-2$;
(C) $2 y+x y-1=0$
* Key feature:
-y is not defined solely in terms of x .
- Function definition consists of mixture of x, y terms.
- Sometimes it is possible to solve for " y " and rewrite as $\mathrm{y}=\mathrm{f}(\mathrm{x})$, but often it is not.
*Some questions to think about:
(1) How do you tell which variable is dependent and which independent?
E.g., think about the above 3 examples.
(2) Is it still a function? How can we tell?
(3) How can we graph such equations, even with a calculator?

Watch out for the variable of differentiation

* Suppose y is an implicit function of $x: y=y(x)$.
* Any function created from $y(x)$, can be differentiated with respect to x.
* Differentiate the following terms (or, function) as instructed:
(A) x^{2} with respect to x.
(B) y^{2} with respect to y.
(C) y^{2} with respect to x.
(D) \sqrt{y} with respect to y.
(E) \sqrt{y} with respect to x.
(F) xy^{2} with respect to x .
* Answers:
(A) $2 x$
(B) 2 y
(C) $\frac{d y^{2}}{d x}=\frac{d y^{2}}{d y} \frac{d y}{d x}=2$ y $\frac{d y}{d x}$
(D) $\frac{d \sqrt{y}}{d y}=\frac{d y^{1 / 2}}{d y}=\frac{1}{2} y^{-1 / 2}$
(E) $\frac{d \sqrt{y}}{d x}=\frac{d \sqrt{y}}{d y} \times \frac{d y}{d x}=\frac{1}{2} y^{-1 / 2} \frac{d y}{d x}$
(F) $\frac{d\left(x y^{2}\right)}{d x}=x \frac{d y^{2}}{d x}+y^{2} \frac{d x}{d x}=x\left[2 y \frac{d y}{d x}\right]+y^{2}=2 x y \frac{d y}{d x}+y^{2}$

