The Chain Rule

Objective: To differentiate more general, complicated functions.

Key idea

* Treat complicated functions as composites assembled from simpler functions.

* Examples:

(1)
$$f(x) = \left(x^3 - 2x^2 + \frac{1}{x}\right)^{10} \quad \longleftrightarrow \quad f(u) = u^{10}, \ u(x) = \left(x^3 - 2x^2 + \frac{1}{x}\right)^{10}$$

(2)
$$g(x) = e^{\left(x^{3} - 2x^{2} + \frac{1}{x}\right)} \quad \longleftrightarrow \quad g(u) = e^{u}, \ u(x) = \left(x^{3} - 2x^{2} + \frac{1}{x}\right)$$

(3)
$$r(t) = ln\left(t^2 + 5t\right) \quad \longleftrightarrow \quad r(u) = ln(u), \quad u(t) = \left(t^2 + 5t\right)$$

(4)
$$g(t) = \sqrt[5]{\ln(1-t^5)} \quad \longleftrightarrow \quad g(u) = \sqrt[5]{u}, \quad u(v) = \ln(v), \quad v(t) = (1-t^5)$$

* It is now important to distinguish between differentiation variables.

In example (1):
$$\frac{df}{dx}$$
 is not the same as $\frac{df}{du}$ or $\frac{du}{dx}$
In example (4): $\frac{dg}{dt}$ is different from $\frac{dg}{du}$, $\frac{du}{dv}$ and $\frac{dv}{dt}$

* Thus, the prime notation can become very misleading or confusing here.

Recall the general power rule ("baby" chain rule):

If your function has the form $f(x)=u^n$ then its derivative is

$$\frac{df}{dx} = n u^{n-1} \times \frac{du}{dx}$$

The full chain rule says:

If you write (or imagine) the function f(x) as a composite of the form $f(u) \cdot u(x)$,

then its derivative with respect to x is

$$\frac{df}{dx} = \frac{df}{du} \times \frac{du}{dx}$$

Recipe for applying the full chain rule to find df/dx:

$$\left\{ e.g., \text{ let } f(x) = e^{\left(x^{3} - 2x^{2}\right)} \right\}$$

Step 1: Simplify the function by writing it as composite of u(x).

$$\left\{ e.g., \text{ let } f(u) = e^{u}, u(x) = \left(x^{3} - 2x^{2}\right) \right\}$$

Step 2: Differentiate f(u) with respect to u, and u(x) with respect to x, to get

$$\frac{df}{du} \text{ and } \frac{du}{dx}. \qquad \left\{ \text{ e.g., } \frac{df}{du} = e^{u}, \quad \frac{du}{dx} = \left(3x^{2} - 4x\right) \right\}$$

Step 3: Get df/dx from chain rule:

$$\frac{df}{dx} = \frac{df}{du} \times \frac{du}{dx}. \qquad \left\{ e.g., \quad \frac{df}{dx} = e^{u} \left(3x^{2} - 4x \right) \right\}$$
$$\left\{ e.g., \quad \frac{df}{dx} = e^{\left(x^{3} - 2x^{2} \right)} \left[3x^{2} - 4x \right] \right\}$$

Step 4: Replace "u" by original stuff.

Implicit Differentiation Preliminaries

What are implicit functions?

* Examples:

(A) $y^2 - x = 0;$ (B) $x e^y - y = x^2 - 2;$ (C) 2y + xy - 1 = 0

* Key feature:

- y is not defined solely in terms of x.
- Function definition consists of mixture of x, y terms.

- Sometimes it is possible to solve for "y" and rewrite as y=f(x), but often it is not.

- * Some questions to think about:
 - (1) How do you tell which variable is dependent and which independent?

E.g., think about the above 3 examples.

- (2) Is it still a function? How can we tell?
- (3) How can we graph such equations, even with a calculator?

Watch out for the variable of differentiation

- * Suppose y is an implicit function of x: y = y(x).
- * Any function created from y(x), can be differentiated with respect to x.
- * Differentiate the following terms (or, function) as instructed:
 - (A) x^2 with respect to x.
 - (B) y^2 with respect to y.
 - (C) y^2 with respect to x.
 - (D) \sqrt{y} with respect to y.
 - (E) \sqrt{y} with respect to x.
 - (F) $x y^2$ with respect to x.

* Answers:

- (A) 2x (B) 2y
- (C) $\frac{dy^2}{dx} = \frac{dy^2}{dy} \frac{dy}{dx} = 2y \frac{dy}{dx}$
- (D) $\frac{d\sqrt{y}}{dy} = \frac{dy^{1/2}}{dy} = \frac{1}{2} y^{-1/2}$
- (E) $\frac{d\sqrt{y}}{dx} = \frac{d\sqrt{y}}{dy} \times \frac{dy}{dx} = \frac{1}{2} y^{-1/2} \frac{dy}{dx}$

(F)
$$\frac{d(xy^2)}{dx} = x \frac{dy^2}{dx} + y^2 \frac{dx}{dx} = x \left[2y \frac{dy}{dx} \right] + y^2 = 2xy \frac{dy}{dx} + y^2$$