A general note on theorems

* Recall, a key objective of mathematics is to discover patterns and relationships.

* Theorems are, essentially, a general statement of a relationship that can be logically proven starting from some minimum set of accepted facts (axioms).

* Most theorems look like the following statement:

"If **A**, then **B**."

"If *hypothesis*, then *conclusion*."

E.g., "If two odd numbers are added, then the result is an even number."

* The hypothesis and the conclusion are both key components of a theorem. It doesn't make sense to omit (or misstate) either part.

* Some theorems have a long and detailed hypothesis, with a very short conclusion. The Squeeze Theorem is a perfect example of this!

The Squeeze Theorem

Hypothesis:

* Suppose we want to find $\lim_{x \to \infty} g(x)$ for some function g(x).

* Suppose we can find two other functions f(x) and h(x) that completely enclose

g(x) from above and below when x is in the neighborhood of a.

In mathematical terms: $f(x) \le g(x) \le h(x)$ in some open interval containing *a* except, possibly, at *a* itself.

* Lastly, suppose $\lim_{x \to a} f(x)$ and $\lim_{x \to a} h(x)$ have the same numerical value, say *L*. <u>Conclusion:</u>

* Then $\lim_{x \to a} g(x) = L$. In other words, $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \lim_{x \to a} h(x)$.