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9.8 Chaos and Strange Attractors: The Lorenz Equations
In principle, the methods described in this chapter for second order autonomous sys-
tems can be applied to higher order systems as well. In practice, several difficulties
arise when we try to do this. One problem is that there is simply a greater num-
ber of possible cases that can occur, and the number increases with the number of
equations in the system (and the dimension of the phase space). Another problem
is the difficulty of graphing trajectories accurately in a phase space of more than two
dimensions; even in three dimensions it may not be easy to construct a clear and
understandable plot of the trajectories, and it becomes more difficult as the number
of variables increases. Finally, and this has been clearly realized only fairly recently,
there are different and very complex phenomena that can occur, and frequently do
occur, in systems of third and higher order that are not present in second order sys-
tems. Our goal in this section is to provide a brief introduction to some of these
phenomena by discussing one particular three-dimensional autonomous system that
has been intensively studied. In some respects, the presentation here is similar to the
treatment of the logistic difference equation in Section 2.9.

15Richard Fitzhugh (1922–2007) of the United States Public Health Service and Jin-Ichi Nagumo (1926–
1999) of the University of Tokyo independently proposed a simplification of the Hodgkin–Huxley model
of neural transmission around 1961.
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An important problem in meteorology, and in other applications of fluid dynamics,
concerns the motion of a layer of fluid, such as the earth’s atmosphere, that is warmer
at the bottom than at the top; see Figure 9.8.1. If the vertical temperature difference
�T is small, then there is a linear variation of temperature with altitude but no
significant motion of the fluid layer. However, if �T is large enough, then the warmer
air rises, displacing the cooler air above it, and a steady convective motion results. If
the temperature difference increases further, then eventually the steady convective
flow breaks up and a more complex and turbulent motion ensues.

Cooler

Warmer

Temperature
difference ΔT

FIGURE 9.8.1 A layer of fluid heated from below.

While investigating this phenomenon, Edward N. Lorenz16 was led (by a process
too involved to describe here) to the nonlinear autonomous three-dimensional sys-
tem

dx/dt = σ(−x + y),

dy/dt = rx − y − xz, (1)

dz/dt = −bz + xy.

Equations (1) are now commonly referred to as the Lorenz equations.17 Observe that
the second and third equations involve quadratic nonlinearities. However, except
for being a system of three equations, superficially the Lorenz equations appear no
more complicated than the competing species or predator–prey equations discussed
in Sections 9.4 and 9.5. The variable x in Eqs. (1) is related to the intensity of the
fluid motion, while the variables y and z are related to the temperature variations
in the horizontal and vertical directions. The Lorenz equations also involve three
parameters σ , r, and b, all of which are real and positive. The parameters σ and b
depend on the material and geometrical properties of the fluid layer. For the earth’s
atmosphere, reasonable values of these parameters are σ = 10 and b = 8/3; they will
be assigned these values in much of what follows in this section. The parameter r, on
the other hand, is proportional to the temperature difference �T , and our purpose
is to investigate how the nature of the solutions of Eqs. (1) changes with r.

16Edward N. Lorenz (1917–2008), American meteorologist, received his Ph.D. from the Massachusetts
Institute of Technology in 1948 and has been associated with that institution throughout his scientific
career. His first studies of the system (1) appeared in a famous 1963 paper dealing with the stability of
fluid flows in the atmosphere.
17A very thorough treatment of the Lorenz equations appears in the book by Sparrow listed in the
references at the end of this chapter.
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Before proceeding further, we note that for an autonomous system of three first
order equations

dx/dt = F(x, y, z), dy/dt = G(x, y, z), dz/dt = H(x, y, z), (2)

the Jacobian matrix J is defined by

J =
⎛
⎜⎝

Fx Fy Fz

Gx Gy Gz

Hx Hy Hz

⎞
⎟⎠ . (3)

Thus, for the Lorenz equations (1), the Jacobian matrix is

J =
⎛
⎜⎝

−σ σ 0
r − z −1 −x

y x −b

⎞
⎟⎠ . (4)

The first step in analyzing the Lorenz equations is to locate the critical points by
solving the algebraic system

σx − σy = 0,

rx − y − xz = 0, (5)

−bz + xy = 0.

From the first equation we have y = x. Then, eliminating y from the second and third
equations, we obtain

x(r − 1 − z) = 0, (6)

−bz + x2 = 0. (7)

One way to satisfy Eq. (6) is to choose x = 0. Then it follows that y = 0 and, from
Eq. (7), z = 0. Alternatively, we can satisfy Eq. (6) by choosing z = r − 1. Then
Eq. (7) requires that x = ±√

b(r − 1) and then y = ±√
b(r − 1) also. Observe that

these expressions for x and y are real only when r ≥ 1. Thus (0,0,0), which we will
denote by P1, is a critical point for all values of r, and it is the only critical point
for r < 1. However, when r > 1, there are also two other critical points, namely,
(
√

b(r − 1),
√

b(r − 1), r − 1) and (−√
b(r − 1), −√

b(r − 1), r − 1). We will denote
the latter two points by P2 and P3, respectively. Note that all three critical points
coincide when r = 1. As r increases through the value 1, the critical point P1 at the
origin bifurcates, and the critical points P2 and P3 come into existence.

Next we will determine the local behavior of solutions in the neighborhood of
each critical point. Although much of the following analysis can be carried out for
arbitrary values of σ and b, we will simplify our work by using the values σ = 10 and
b = 8/3. Near the origin (the critical point P1) the approximating linear system is

⎛
⎜⎝

x
y
z

⎞
⎟⎠

′

=
⎛
⎜⎝

−10 10 0
r −1 0
0 0 −8/3

⎞
⎟⎠

⎛
⎜⎝

x
y
z

⎞
⎟⎠ . (8)
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The eigenvalues18 are determined from the equation∣∣∣∣∣∣∣
−10 − λ 10 0

r −1 − λ 0
0 0 −8/3 − λ

∣∣∣∣∣∣∣ = −(8/3 + λ)[λ2 + 11λ − 10(r − 1)] = 0. (9)

Therefore

λ1 = −8
3

, λ2 = −11 − √
81 + 40r

2
, λ3 = −11 + √

81 + 40r
2

. (10)

Note that all three eigenvalues are negative for r < 1; for example, when r = 1/2,
the eigenvalues are λ1 = −8/3, λ2 = −10.52494, λ3 = −0.47506. Hence the origin is
asymptotically stable for this range of r both for the linear approximation (8) and
for the original system (1). However, λ3 changes sign when r = 1 and is positive for
r > 1. The value r = 1 corresponds to the initiation of convective flow in the physical
problem described earlier. The origin is unstable for r > 1; all solutions starting near
the origin tend to grow, except for those lying precisely in the plane determined by the
eigenvectors associated with λ1 and λ2 [or, for the nonlinear system (1), in a certain
surface tangent to this plane at the origin].

Next let us consider the neighborhood of the critical point P2(
√

8(r − 1)/3,√
8(r − 1)/3, r − 1) for r > 1. If u, v, and w are the perturbations from the criti-

cal point in the x, y, and z directions, respectively, then the approximating linear
system is⎛

⎜⎝
u
v

w

⎞
⎟⎠

′

=
⎛
⎜⎝

−10 10 0
1 − 1 −√

8(r − 1)/3√
8(r − 1)/3

√
8(r − 1)/3 −8/3

⎞
⎟⎠

⎛
⎜⎝

u
v

w

⎞
⎟⎠ . (11)

The eigenvalues of the coefficient matrix of Eq. (11) are determined from the equa-
tion

3λ3 + 41λ2 + 8(r + 10)λ + 160(r − 1) = 0, (12)

which is obtained by straightforward algebraic steps that are omitted here. The
solutions of Eq. (12) depend on r in the following way:

For 1 < r < r1
∼= 1.3456 there are three negative real eigenvalues.

For r1 < r < r2
∼= 24.737 there are one negative real eigenvalue and two complex

eigenvalues with negative real part.

For r2 < r there are one negative real eigenvalue and two complex eigenvalues
with positive real part.

The same results are obtained for the critical point P3. Thus there are several
different situations.

For 0 < r < 1 the only critical point is P1 and it is asymptotically stable. All solu-
tions approach this point (the origin) as t → ∞.

For 1 < r < r1 the critical points P2 and P3 are asymptotically stable and P1 is
unstable. All nearby solutions approach one or the other of the points P2 and P3

exponentially.

18Since r appears as a parameter in the Lorenz equations, we will use λ to denote the eigenvalues.
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For r1 < r < r2 the critical points P2 and P3 are asymptotically stable and P1 is
unstable. All nearby solutions approach one or the other of the points P2 and P3;
most of them spiral inward to the critical point.

For r2 < r all three critical points are unstable. Most solutions near P2 or P3 spiral
away from the critical point.

However, this is by no means the end of the story. Let us consider solutions for
r somewhat greater than r2. In this case P1 has one positive eigenvalue and each
of P2 and P3 has a pair of complex eigenvalues with positive real part. A trajectory
can approach any one of the critical points only on certain highly restricted paths.
The slightest deviation from these paths causes the trajectory to depart from the
critical point. Since none of the critical points is stable, one might expect that most
trajectories would approach infinity for large t. However, it can be shown that all
solutions remain bounded as t → ∞; see Problem 5. In fact, it can be shown that all
solutions ultimately approach a certain limiting set of points that has zero volume.
Indeed, this is true not only for r > r2 but for all positive values of r.

A plot of computed values of x versus t for a typical solution with r > r2 is shown
in Figure 9.8.2. Note that the solution oscillates back and forth between positive and
negative values in a rather erratic manner. Indeed, the graph of x versus t resembles
a random vibration, although the Lorenz equations are entirely deterministic and
the solution is completely determined by the initial conditions. Nevertheless, the
solution also exhibits a certain regularity in that the frequency and amplitude of the
oscillations are essentially constant in time.
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FIGURE 9.8.2 A plot of x versus t for the Lorenz equations (1) with r = 28; the initial point
is (5, 5, 5).

The solutions of the Lorenz equations are also extremely sensitive to perturbations
in the initial conditions. Figure 9.8.3 shows the graphs of computed values of x versus
t for the two solutions whose initial points are (5, 5, 5) and (5.01, 5, 5). The dashed
graph is the same as the one in Figure 9.8.2, while the solid graph starts at a nearby
point. The two solutions remain close until t is near 10, after which they are quite
different and, indeed, seem to have no relation to each other. It was this property that
particularly attracted the attention of Lorenz in his original study of these equations,
and caused him to conclude that accurate detailed long-range weather predictions
are probably not possible.
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FIGURE 9.8.3 Plots of x versus t for two initially nearby solutions of Lorenz equations with
r = 28; the initial point is (5, 5, 5) for the dashed curve and is (5.01, 5, 5) for the solid curve.

The attracting set in this case, although of zero volume, has a rather complicated
structure and is called a strange attractor. The term chaotic has come into general
use to describe solutions such as those shown in Figures 9.8.2 and 9.8.3.

To determine how and when the strange attractor is created, it is illuminating to
investigate solutions for smaller values of r. For r = 21, solutions starting at three dif-
ferent initial points are shown in Figure 9.8.4. For the initial point (3, 8, 0) the solution
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FIGURE 9.8.4 Plots of x versus t for three solutions of Lorenz equations with r = 21.
(a) Initial point is (3, 8, 0). (b) Initial point is (5, 5, 5). (c) Initial point is (5, 5, 10).
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begins to converge to the point P3 almost at once; see Figure 9.8.4a. For the second
initial point (5, 5, 5) there is a fairly short interval of transient behavior, after which
the solution converges to P2; see Figure 9.8.4b. However, as shown in Figure 9.8.4c,
for the third initial point (5, 5, 10) there is a much longer interval of transient chaotic
behavior before the solution eventually converges to P2. As r increases, the dura-
tion of the chaotic transient behavior also increases. When r = r3

∼= 24.06, the chaotic
transients appear to continue indefinitely, and the strange attractor comes into being.

We can also show the trajectories of the Lorenz equations in the three-
dimensional phase space, or at least projections of them in various planes. Fig-
ures 9.8.5 and 9.8.6 show projections in the xy- and xz-planes, respectively, of the
trajectory starting at (5, 5, 5). Observe that the graphs in these figures appear to
cross over themselves repeatedly, but this cannot be true for the actual trajectories in
three-dimensional space because of the general uniqueness theorem. The apparent
crossings are due wholly to the two-dimensional character of the figures.
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FIGURE 9.8.5 Projections of a trajectory of the Lorenz equations (with r = 28) in the
xy-plane.
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FIGURE 9.8.6 Projections of a trajectory of the Lorenz equations (with r = 28) in the
xz-plane.
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The sensitivity of solutions to perturbations of the initial data also has implications
for numerical computations, such as those reported here. Different step sizes, differ-
ent numerical algorithms, or even the execution of the same algorithm on different
machines will introduce small differences in the computed solution, which eventually
lead to large deviations. For example, the exact sequence of positive and negative
loops in the calculated solution depends strongly on the precise numerical algorithm
and its implementation, as well as on the initial conditions. However, the general
appearance of the solution and the structure of the attracting set are independent of
all these factors.

Solutions of the Lorenz equations for other parameter ranges exhibit other in-
teresting types of behavior. For example, for certain values of r greater than r2,
intermittent bursts of chaotic behavior separate long intervals of apparently steady
periodic oscillation. For other ranges of r, solutions show the period-doubling prop-
erty that we saw in Section 2.9 for the logistic difference equation. Some of these
features are taken up in the problems.

Since about 1975 the Lorenz equations and other higher dimensional autonomous
systems have been studied intensively, and this is one of the most active areas of cur-
rent mathematical research. Chaotic behavior of solutions appears to be much more
common than was suspected at first, and many questions remain unanswered. Some
of these are mathematical in nature, while others relate to the physical applications
or interpretations of solutions.

PROBLEMS Problems 1 through 3 ask you to fill in some of the details of the analysis of the Lorenz equations
in this section.

1. (a) Show that the eigenvalues of the linear system (8), valid near the origin, are given by
Eq. (10).
(b) Determine the corresponding eigenvectors.
(c) Determine the eigenvalues and eigenvectors of the system (8) in the case where r = 28.

2. (a) Show that the linear approximation valid near the critical point P2 is given by Eq. (11).
(b) Show that the eigenvalues of the system (11) satisfy Eq. (12).
(c) For r = 28, solve Eq. (12) and thereby determine the eigenvalues of the system (11).

3. (a) By solving Eq. (12) numerically, show that the real part of the complex roots changes
sign when r ∼= 24.737.
(b) Show that a cubic polynomial x3 + Ax2 + Bx + C has one real zero and two pure
imaginary zeros only if AB = C.
(c) By applying the result of part (b) to Eq. (12), show that the real part of the complex
roots changes sign when r = 470/19.

4. Use the Liapunov function V(x, y, z) = x2 + σy2 + σz2 to show that the origin is a globally
asymptotically stable critical point for the Lorenz equations (1) if r < 1.

5. Consider the ellipsoid

V(x, y, z) = rx2 + σy2 + σ(z − 2r)2 = c > 0.

(a) Calculate dV/dt along trajectories of the Lorenz equations (1).
(b) Determine a sufficient condition on c so that every trajectory crossing V(x, y, z) = c
is directed inward.
(c) Evaluate the condition found in part (b) for the case σ = 10, b = 8/3, r = 28.
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In each of Problems 6 through 10 carry out the indicated investigations of the Lorenz equations.

6. For r = 28 plot x versus t for the cases shown in Figures 9.8.2 and 9.8.3. Do your graphs
agree with those shown in the figures? Recall the discussion of numerical computation in
the text.

7. For r = 28 plot the projections in the xy- and xz-planes, respectively, of the trajectory
starting at the point (5, 5, 5). Do the graphs agree with those in Figures 9.8.5 and 9.8.6?

8. (a) For r = 21 plot x versus t for the solutions starting at the initial points (3, 8, 0), (5, 5, 5),
and (5, 5, 10). Use a t interval of at least 0 ≤ t ≤ 30. Compare your graphs with those in
Figure 9.8.4.
(b) Repeat the calculation in part (a) for r = 22, r = 23, and r = 24. Increase the t interval
as necessary so that you can determine when each solution begins to converge to one of
the critical points. Record the approximate duration of the chaotic transient in each case.
Describe how this quantity depends on the value of r.
(c) Repeat the calculations in parts (a) and (b) for values of r slightly greater than 24.
Try to estimate the value of r for which the duration of the chaotic transient approaches
infinity.

9. For certain r intervals, or windows, the Lorenz equations exhibit a period-doubling prop-
erty similar to that of the logistic difference equation discussed in Section 2.9. Careful
calculations may reveal this phenomenon.
(a) One period-doubling window contains the value r = 100. Let r = 100 and plot the
trajectory starting at (5, 5, 5) or some other initial point of your choice. Does the solution
appear to be periodic? What is the period?
(b) Repeat the calculation in part (a) for slightly smaller values of r. When r ∼= 99.98, you
may be able to observe that the period of the solution doubles. Try to observe this result
by performing calculations with nearby values of r.
(c) As r decreases further, the period of the solution doubles repeatedly. The next period
doubling occurs at about r = 99.629. Try to observe this by plotting trajectories for nearby
values of r.

10. Now consider values of r slightly larger than those in Problem 9.
(a) Plot trajectories of the Lorenz equations for values of r between 100 and 100.78. You
should observe a steady periodic solution for this range of r values.
(b) Plot trajectories for values of r between 100.78 and 100.8. Determine as best you can
how and when the periodic trajectory breaks up.

The Rössler19 System. The system

x′ = −y − z, y′ = x + ay, z′ = b + z(x − c), (i)

where a, b, and c are positive parameters, is known as the Rössler20 system. It is a relatively
simple system, consisting of two linear equations and a third equation with a single quadratic
nonlinearity. In Problems 11 through 15 we ask you to carry out some numerical investigations
of this system, with the goal of exploring its period-doubling property. To simplify matters set
a = 0.25, b = 0.5, and let c > 0 remain arbitrary.

19Otto E. Rössler (1940– ), German medical doctor and biochemist, was a student and later became a
faculty member at the University of Tübingen. The equations named for him first appeared in a paper he
published in 1976.
20See the book by Strogatz for a more extensive discussion and further references.
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11. (a) Show that there are no critical points when c <
√

0.5, one critical point for c = √
0.5,

and two critical points when c >
√

0.5.
(b) Find the critical point(s) and determine the eigenvalues of the associated Jacobian
matrix when c = √

0.5 and when c = 1.
(c) How do you think trajectories of the system will behave for c = 1? Plot the trajectory
starting at the origin. Does it behave the way that you expected?
(d) Choose one or two other initial points and plot the corresponding trajectories. Do
these plots agree with your expectations?

12. (a) Let c = 1.3. Find the critical points and the corresponding eigenvalues. What conclu-
sions, if any, can you draw from this information?
(b) Plot the trajectory starting at the origin. What is the limiting behavior of this trajec-
tory? To see the limiting behavior clearly you may wish to choose a t-interval for your
plot so that the initial transients are eliminated.
(c) Choose one or two other initial points and plot the corresponding trajectories. Are
the limiting behavior(s) the same as in part (b)?
(d) Observe that there is a limit cycle whose basin of attraction is fairly large (although
not all of xyz-space). Draw a plot of x, y, or z versus t and estimate the period T1 of motion
around the limit cycle.

13. The limit cycle found in Problem 12 comes into existence as a result of a Hopf bifurcation
at a value c1 of c between 1 and 1.3. Determine, or at least estimate more precisely, the
value of c1. There are several ways in which you might do this.
(a) Draw plots of trajectories for different values of c.
(b) Calculate eigenvalues at critical points for different values of c.
(c) Use the result of Problem 3(b) above.

14. (a) Let c = 3. Find the critical points and the corresponding eigenvalues.
(b) Plot the trajectory starting at the point (1, 0, −2). Observe that the limit cycle now
consists of two loops before it closes; it is often called a 2-cycle.
(c) Plot x, y, or z versus t and show that the period T2 of motion on the 2-cycle is very
nearly double the period T1 of the simple limit cycle in Problem 12. There has been a
period-doubling bifurcation of cycles for a certain value of c between 1.3 and 3.

15. (a) Let c = 3.8. Find the critical points and the corresponding eigenvalues.
(b) Plot the trajectory starting at the point (1, 0, −2). Observe that the limit cycle is now a
4-cycle. Find the period T4 of motion. Another period-doubling bifurcation has occurred
for c between 3 and 3.8.
(c) For c = 3.85 show that the limit cycle is an 8-cycle. Verify that its period is very close
to eight times the period of the simple limit cycle in Problem 12.
Note: As c increases further there is an accelerating cascade of period-doubling bifurca-
tions. The bifurcation values of c converge to a limit, which marks the onset of chaos.




