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13. Consider

m
d2y
dt2

+ dy
dt

+ 2y = 0.

That is, fix b = 1 and k = 2, and let 0 < m < ∞.

14. Using the DETools program TDPlaneQuiz, describe the path through the trace-
determinant plane that was used to produce each animation.

3.8 LINEAR SYSTEMS IN THREE DIMENSIONS

So far, we have studied linear systems with two dependent variables. For these sys-
tems, the behavior of solutions and the nature of the phase plane can be determined by
computing the eigenvalues and eigenvectors of the 2 × 2 coefficient matrix. Once we
have found two solutions with linearly independent initial conditions, we can give the
general solution.

In this section we show that the same is true for linear systems with three de-
pendent variables. The eigenvalues and eigenvectors of the 3 × 3 coefficient matrix
determine the behavior of solutions and the general solution. Three-dimensional linear
systems have three eigenvalues, so the list of possible qualitatively distinct phase spaces
is longer than for planar systems. Since we must deal with three scalar equations rather
than two, the arithmetic can quickly become much more involved. You might want to
seek out software or a calculator capable of handling 3× 3 matrices.

Linear Independence and the Linearity Principle
The general form of a linear system with three dependent variables is

dx
dt

= a11x + a12y + a13z

dy
dt

= a21x + a22y + a23z

dz
dt

= a31x + a32y + a33z,

where x , y, and z are the dependent variables and the coefficients ai j , (i, j = 1, 2, 3),
are constants. We can write this system in matrix form as

dY
dt

= AY,

where A is the coefficient matrix

A =

⎛

⎜⎝
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞

⎟⎠
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3.8 Linear Systems in Three Dimensions 361

and Y is the vector of dependent variables,

Y =

⎛

⎜⎝
x
y
z

⎞

⎟⎠ .

To specify an initial condition for such a system, we must give three numbers, x0, y0,
and z0.

The Linearity Principle holds for linear systems in all dimensions, so if Y1(t)
and Y2(t) are solutions, then k1Y1(t) + k2Y2(t) is also a solution for any constants k1
and k2.

Suppose Y1(t), Y2(t) and Y3(t) are three solutions of the linear system

dY
dt

= AY.

If for any point (x0, y0, z0) there exist constants k1, k2, and k3 such that

k1Y1(0) + k2Y2(0) + k3Y3(0) = (x0, y0, z0),

then the general solution of the system is

Y(t) = k1Y1(t) + k2Y2(t) + k3Y3(t).

In order for three solutions Y1(t), Y2(t), and Y3(t) to give the general solution,
the three vectors Y1(0), Y2(0), and Y3(0) must point in “different directions”; that is,
no one of them can be in the plane through the origin and the other two. In this case
the vectors Y1(0), Y2(0), and Y3(0) (and the corresponding solutions) are said to be
linearly independent. We present an algebraic technique for checking linear indepen-
dence in the exercises (see Exercises 2 and 3).

An example
Consider the linear system

dY
dt

= AY =

⎛

⎜⎝
0 0.1 0
0 0 0.2
0.4 0 0

⎞

⎟⎠

⎛

⎜⎝
x
y
z

⎞

⎟⎠ .

We can check that the functions

Y1(t) = e0.2t

⎛

⎜⎝
1
2
2

⎞

⎟⎠

Y2(t) = e−0.1t

⎛

⎜⎜⎜⎝

− cos
(√
0.03 t

)
−

√
3 sin

(√
0.03 t

)

−2 cos
(√
0.03 t

)
+ 2

√
3 sin

(√
0.03 t

)

4 cos
(√
0.03 t

)

⎞

⎟⎟⎟⎠
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Y3(t) = e−0.1t

⎛

⎜⎜⎜⎝

− sin
(√
0.03 t

)
+

√
3 cos

(√
0.03 t

)

−2 sin
(√
0.03 t

)
− 2

√
3 cos

(√
0.03 t

)

4 sin
(√
0.03 t

)

⎞

⎟⎟⎟⎠

are solutions by substituting them into the differential equation. For example,

dY1
dt

= e0.2t

⎛

⎜⎝
0.2
0.4
0.4

⎞

⎟⎠

and

AY1(t) =

⎛

⎜⎝
0 0.1 0
0 0 0.2
0.4 0 0

⎞

⎟⎠ e0.2t

⎛

⎜⎝
1
2
2

⎞

⎟⎠ = e0.2t

⎛

⎜⎝
0.2
0.4
0.4

⎞

⎟⎠ ,

so Y1(t) is a solution. The other two functions can be checked similarly (see Exer-
cise 1). We can sketch the solution curves that correspond to these solutions in the
three-dimensional phase space (see Figure 3.56).

The initial conditions of these three solutions are Y1(0) = (1, 2, 2), Y2(0) =
(−1, −2, 4), and Y3(0) = (

√
3, −2

√
3, 0). These vectors are shown in Figure 3.57,

where we can see that none of them is in the plane determined by the other two; hence,
they are linearly independent.

For example, to find the solution Y(t) with initial position Y(0) = (2, 1, 3), we
must solve

k1Y1(0) + k2Y2(0) + k3Y3(0) = (2, 1, 3),

x
y

z

Figure 3.56
The solution curves of Y1(t), Y2(t), and
Y3(t).

x

y

z

Figure 3.57
Vectors Y1(0) = (1, 2, 2),
Y2(0) = (−1,−2, 4), and
Y3(0) = (

√
3,−2

√
3, 0) in xyz-space.
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3.8 Linear Systems in Three Dimensions 363

which is equivalent to ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k1 − k2 +
√
3k3 = 2

2k1 − 2k2 − 2
√
3k3 = 1

2k1 + 4k2 = 3.

We obtain k1 = 4/3, k2 = 1/12 and k3 =
√
3/4, and the solution is

Y(t) = 4
3
Y1(t) + 1

12
Y2(t) +

√
3
4
Y3(t).

Eigenvalues and Eigenvectors
The method for finding solutions of systems with three dependent variables is the same
as that for systems with two variables. We begin by finding eigenvalues and eigenvec-
tors. Suppose we are given a linear system dY/dt = AY, where A is a 3× 3 matrix of
coefficients and Y = (x, y, z). An eigenvector for the matrix A is a nonzero vector V
such that

AV = λV,

where λ is the eigenvalue for V. If V is an eigenvector for A with eigenvalue λ, then

Y(t) = eλtV

is a solution of the linear system.
The method for finding eigenvalues and eigenvectors for a 3× 3 matrix

A =

⎛

⎜⎝
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞

⎟⎠

is very similar to that for two-dimensional systems, only requiring more arithmetic. In
particular, we need the formula for the determinant of a 3× 3 matrix.

DEFINITION The determinant of the matrix A is

detA = a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31).

Using the 3× 3 identity matrix

I =

⎛

⎜⎝
1 0 0
0 1 0
0 0 1

⎞

⎟⎠ ,
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we obtain the characteristic polynomial of A as

det(A− λI) = det

⎛

⎜⎝
a11 − λ a12 a13
a21 a22 − λ a23
a31 a32 a33 − λ

⎞

⎟⎠ .

As in the two-dimensional case, we have:

THEOREM The eigenvalues of a 3×3 matrix A are the roots of its characteristic poly-
nomial.

To find the eigenvalues of a 3×3 matrix, we must find the roots of a cubic polyno-
mial. This is not as easy as finding the roots of a quadratic. Although there is a “cubic
equation” analogous to the quadratic equation for finding the roots of a cubic, it is quite
complicated. (It is used by computer algebra packages to give exact values of roots of
cubics.) However, in cases where the cubic does not easily factor, we frequently turn to
numerical techniques such as Newton’s method for finding roots.

To find the corresponding eigenvectors, we must solve a system of three linear
equations with three unknowns. Luckily there are many examples of systems that il-
lustrate the possible behaviors in three dimensions and for which the arithmetic is man-
ageable.

A diagonal matrix
The simplest type of 3 × 3 matrix is a diagonal matrix—the only nonzero terms lie on
the diagonal. For example, consider the system

dY
dt

= AY =

⎛

⎜⎝
−3 0 0
0 −1 0
0 0 −2

⎞

⎟⎠

⎛

⎜⎝
x
y
z

⎞

⎟⎠ .

The characteristic polynomial of A is (−3 − λ)(−1 − λ)(−2 − λ), which is simple
because so many of the coefficients of A are zero. The eigenvalues are the roots of this
polynomial, that is, the solutions of

(−3− λ)(−1− λ)(−2− λ) = 0.

Thus the eigenvalues are λ1 = −3, λ2 = −1, and λ3 = −2.
Finding the corresponding eigenvectors is also not too hard. For λ1 = −3, we

must solve
AV1 = −3V1

for V1 = (x1, y1, z1). The product AV1 is
⎛

⎜⎝
−3 0 0
0 −1 0
0 0 −2

⎞

⎟⎠

⎛

⎜⎝
x1
y1
z1

⎞

⎟⎠ =

⎛

⎜⎝
−3x1
−y1
−2z1

⎞

⎟⎠ ,
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3.8 Linear Systems in Three Dimensions 365

and therefore we want to solve
⎛

⎜⎝
−3x1
−y1
−2z1

⎞

⎟⎠ = −3

⎛

⎜⎝
x1
y1
z1

⎞

⎟⎠

for x1, y1, and z1. Solutions of this system of three equations with three unknowns are
y1 = z1 = 0 and x1 may have any (nonzero) value. So, in particular, (1, 0, 0) is an
eigenvector for λ1 = −3. Similarly, we find that (0, 1, 0) and (0, 0, 1) are eigenvectors
for λ2 = −1 and λ3 = −2, respectively. Note that (1, 0, 0), (0, 1, 0), and (0, 0, 1) are
linearly independent.

From these eigenvalues and eigenvectors we can construct solutions of the system

Y1(t) = e−3t

⎛

⎜⎝
1
0
0

⎞

⎟⎠ =

⎛

⎜⎝
e−3t

0
0

⎞

⎟⎠ ,

Y2(t) = e−t

⎛

⎜⎝
0
1
0

⎞

⎟⎠ =

⎛

⎜⎝
0
e−t

0

⎞

⎟⎠ ,

and

Y3(t) = e−2t

⎛

⎜⎝
0
0
1

⎞

⎟⎠ =

⎛

⎜⎝
0
0

e−2t

⎞

⎟⎠ .

Because this system is diagonal, we could have gotten this far “by inspection.” If
we write the system in components

dx
dt

= −3x
dy
dt

= −y
dz
dt

= −2z,

we see that dx/dt depends only on x , dy/dt depends only on y, and dz/dt depends
only on z. In other words, the system completely decouples, and each coordinate can
be dealt with independently. It is easy to solve these equations.

Now that we have three independent solutions, we can solve any initial-value
problem for this system. For example, to find the solution Y(t) with Y(0) = (2, 1, 2),
we must find constants k1, k2, and k3 such that

(2, 1, 2) = k1Y1(0) + k2Y2(0) + k3Y3(0).

So k1 = 2, k2 = 1, and k3 = 2, and Y(t) = (2e−3t , e−t , 2e−2t ) is the required solution.
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x

y

z

Figure 3.58
Phase space for dY/dt = AY for the
diagonal matrix A.

Figure 3.58 is a sketch of the phase space. Note that the coordinate axes are lines
of eigenvectors, so they form straight-line solutions. Since all three of the eigenvalues
are negative, solutions along all three of the axes tend toward the origin. Because every
other solution can be made up as a linear combination of the solutions on the axes, all
solutions must tend to the origin and it is natural to call the origin a sink.

Three-dimensional behavior
Before giving a classification of linear systems in three dimensions, we give an example
whose qualitative behavior is different from that of any two-dimensional system.

Consider the system

dY
dt

= BY =

⎛

⎜⎝
0.1 −1 0
1 0.1 0
0 0 −0.2

⎞

⎟⎠

⎛

⎜⎝
x
y
z

⎞

⎟⎠ .

The characteristic polynomial of B is

((0.1− λ)(0.1− λ) + 1)(−0.2− λ) = (λ2 − 0.2λ + 1.01)(−0.2− λ),

so the eigenvalues are λ1 = −0.2, λ2 = 0.1+ i , and λ3 = 0.1− i . Corresponding to the
real negative eigenvalue λ1, we expect to see a line of solutions that approach the origin
in the phase space. By analogy to the two-dimensional case, the complex eigenvalues
with positive real part correspond to solutions that spiral away from the origin. This is
a “spiral saddle,” which is not possible in two dimensions.

We could find the eigenvectors associated with each eigenvalue as above and find
the general solution. The eigenvectors for the complex eigenvalues are complex, and to
find the real solutions, we would have to take real and imaginary parts, just as in two
dimensions. However, we are lucky again, and this system also decouples into

dx
dt

= 0.1x − y

dy
dt

= x + 0.1y
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and
dz
dt

= −0.2z.

In the xy-plane, the eigenvalues are 0.1 ± i , so the origin is a spiral source. Along the
z-axis, all solutions tend toward zero as time increases (see Figure 3.59).

Combining these pictures, we obtain a sketch of the three-dimensional phase space.
Note that the z-coordinate of each solution decreases toward zero, while in the xy-plane
solutions spiral away from the origin (see Figure 3.60).

x

y z

Figure 3.59
Phase plane for xy-system and phase line for z.

x

y

z

Figure 3.60
Phase space for dY/dt = BY.

Classification of Three-Dimensional Linear Systems
Although there are more possible types of phase space pictures for three-dimensional
linear systems than for two dimensions, the list is still finite. Just as for two dimensions,
the nature of the system is determined by the eigenvalues. Real eigenvalues correspond
to straight-line solutions that tend toward the origin if the eigenvalue is negative and
away from the origin if the eigenvalue is positive. Complex eigenvalues correspond to
spiraling. Negative real parts indicate spiraling toward the origin, whereas positive real
parts indicate spiraling away from the origin.

Since the characteristic polynomial is a cubic, there are three eigenvalues (which
might not all be distinct if there are repeated roots). It is always the case that at least
one of the eigenvalues is real. The other two may be real or a complex conjugate pair
(see exercises).

The most important types of three-dimensional linear systems can be divided into
three categories: sinks, sources, and saddles. Examples of the other cases (which in-
clude systems with double eigenvalues and zero eigenvalues) are given in the exercises.
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Sinks
We call the equilibrium point at the origin a sink if all solutions tend toward it as time
increases. If all three eigenvalues are real and negative, then there are three straight
lines of solutions, all of which tend toward the origin. Since every other solution is a
linear combination of these solutions, all solutions tend to the origin as time increases
(see Figure 3.58).

The other possibility for a sink is to have one real negative eigenvalue and two
complex eigenvalues with negative real parts. This means that there is one straight line
of solutions tending to the origin and a plane of solutions that spiral toward the origin.
All other solutions exhibit both of these behaviors (see Figure 3.61).

Sources
There are two possibilities for sources as well. We can have either three real and posi-
tive eigenvalues or one real positive eigenvalue and a complex conjugate pair with posi-
tive real parts. An example of such a phase space is given in Figure 3.62. Note that this
system looks just like the sink in Figure 3.61 except the directions of the arrows have
been reversed, so solutions move away from the origin as time increases.

x

y

z

Figure 3.61
Example phase space for spiral sink.

x

y

z

Figure 3.62
Example phase space for spiral source.

Saddles
The equilibrium point at the origin is a saddle if, as time increases to infinity, some
solutions tend toward it while other solutions move away from it. This can occur in
four different ways. If all the eigenvalues are real, then we could have one positive and
two negative or two positive and one negative. In the first case, one positive and two
negative, there is one straight line of solutions that tend away from the origin as time
increases and a plane of solutions that tend toward the origin as time increases. In the
other case, two positive and one negative, there is a plane of solutions that tend away
from the origin as time increases and a line of solutions that tend toward the origin as
time increases. In both cases, all other solutions will eventually move away from the
origin as time increases or decreases (see Figure 3.63).
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The other two cases occur if there is only one real eigenvalue and the other two
are a complex conjugate pair. If the real eigenvalue is negative and the real parts of the
complex eigenvalues are positive, then as time increases there is a straight line of so-
lutions that tend toward the origin and a plane of solutions that tend away from it. All
other solutions are a combination of these behaviors, so as time increases they spiral
around the straight line of solutions in ever widening loops (see Figure 3.60). The other
possibility is that the real eigenvalue is positive and the complex eigenvalues have neg-
ative real part. In this case there is a straight line of solutions that tend away from the
origin as time increases and a plane of solutions that spiral toward the origin as time in-
creases. Every other solution spirals around the straight line of solutions while moving
away from the origin (see Figure 3.64).

x

y

z

Figure 3.63
Example of a saddle with one positive and
two negative eigenvalues.

x

y

z

Figure 3.64
Example of a saddle with one real
eigenvalue and a complex conjugate pair of
eigenvalues.

An example revisited
We end this section by returning to the example that we used at the start of the section.
All of the other examples in this section have been systems that decouple into systems
of smaller dimension. Sadly, the general case is not so simple. This example doesn’t
look too complicated because the coefficient matrix has many zero entries. However, it
does not immediately decouple into lower dimensional systems.

Consider the system

dY
dt

= AY =

⎛

⎜⎝
0 0.1 0
0 0 0.2
0.4 0 0

⎞

⎟⎠

⎛

⎜⎝
x
y
z

⎞

⎟⎠ .

The characteristic polynomial for A is−λ3+0.008, so the eigenvalues are the solutions
of

−λ3 + 0.008 = 0.
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That is, the eigenvalues are the cube roots of 0.008. Every number has three cube roots
if we consider complex as well as real roots. The cube roots of 0.008 are λ1 = 0.2,
λ2 = 0.2e2π i/3, and λ3 = 0.2e−2π i/3. The last two eigenvalues may be written as
λ2 = −0.1+ i

√
0.03 and λ3 = −0.1− i

√
0.03.

This system is a saddle with one positive real eigenvalue and a complex conjugate
pair of eigenvalues with negative real parts. Solutions spiral tightly around the line of
eigenvectors associated to the eigenvalue λ1 = 0.2. In order to sketch the phase space,
we must find the eigenvectors for these eigenvalues.

For λ1 = 0.2, the eigenvectors are solutions of

AV1 = 0.2V1,

which is written in coordinates as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.1y1 = 0.2x1

0.2z1 = 0.2y1

0.4x1 = 0.2z1.

In particular V1 = (1/2, 1, 1) is one such eigenvector. The vector V1 can be used to
determine an entire line of eigenvectors in space.

To find the plane of solutions that spiral toward the origin, we must find the eigen-
vectors for λ2 = −0.1+ i

√
0.03. That is, we must solve

AV2 =
(
−0.1+ i

√
0.03

)
V2

for V2. In other words,

y2 =
(
−1+ i

√
3
)
x2

2z2 =
(
−1+ i

√
3
)
y2

4x2 =
(
−1+ i

√
3
)
z2.

One eigenvector associated to λ2 is V2 = (−1+ i
√
3 , −2− i2

√
3 , 4). The correspond-

ing solution to the system is

Y2(t) = e
(
−0.1+i

√
0.03

)
t (−1+ i

√
3 , −2− i2

√
3 , 4

)
.

We can convert this into two real-valued solutions by taking real and imaginary parts.
Since our goal is to find the plane on which solutions spiral, we need only look at the
initial point Y2(0) = (−1 + i

√
3 , −2 − i2

√
3 , 4). The initial points of the real and

imaginary parts are (−1, −2, 4) and (
√
3 , −2

√
3 , 0), respectively. The plane on which

solutions spiral toward the origin is the plane made up of all linear combinations of
these two vectors. We can use this information to give a fairly accurate sketch of the
phase space of this system (see Figure 3.56). We also sketch the graphs of the coordi-
nate functions for one solution (see Figures 3.65 and 3.66). Note that for the example
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x

y

z

Figure 3.65
Phase space for system
dY/dt = AY.

25 50

−4

4

❅❅■
x(t)

##✠
y(t)

❅❅■
z(t)

t

x, y, z

Figure 3.66
Graphs of x(t), y(t) and z(t) for the indicated
solution in Figure 3.65.

solution shown, all three coordinates tend to infinity as t increases because the eigen-
vector for the eigenvalue λ1 has nonzero components for all three variables.

Three linearly independent solutions of this system are given in the first example
of this section (see page 361). We can see from this example that linear systems in three
dimensions can be quite complicated (even when many of the coefficients are zero).
However, the qualitative behavior is still determined by the eigenvalues, so it is possible
to classify these systems without completely solving them.

EXERCISES FOR SECTION 3.8

1. Consider the linear system

dY
dt

= AY =

⎛

⎜⎝
0 0.1 0
0 0 0.2
0.4 0 0

⎞

⎟⎠

⎛

⎜⎝
x
y
z

⎞

⎟⎠ .

Check that the functions

Y2(t) = e−0.1t

⎛

⎜⎜⎜⎝

− cos
(√
0.03 t

)
−

√
3 sin

(√
0.03 t

)

−2 cos
(√
0.03 t

)
+ 2

√
3 sin

(√
0.03 t

)

4 cos
(√
0.03 t

)

⎞

⎟⎟⎟⎠

and

Y3(t) = e−0.1t

⎛

⎜⎜⎜⎝

− sin
(√
0.03 t

)
+

√
3 cos

(√
0.03 t

)

−2 sin
(√
0.03 t

)
− 2

√
3 cos

(√
0.03 t

)

4 sin
(√
0.03 t

)

⎞

⎟⎟⎟⎠

are solutions to the system.
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2. If a vector Y3 lies in the plane determined by the two vectors Y1 and Y2, then we
can write Y3 as a linear combination of Y1 and Y2. That is,

Y3 = k1Y1 + k2Y2

for some constants k1 and k2. But then

k1Y1 + k2Y2 − Y3 = (0, 0, 0).

Show that if
k1Y1 + k2Y2 + k3Y3 = (0, 0, 0),

with not all of k1, k2, and k3 = 0, then the vectors are not linearly independent.
[Hint: Start by assuming that k3 ̸= 0 and show that Y3 is in the plane determined
by Y1 and Y2. Then treat the other cases.] Note that this computation leads to the
theorem that three vectors Y1, Y2, and Y3 are linearly independent if and only if the
only solution of

k1Y1 + k2Y2 + k3Y3 = (0, 0, 0)

is k1 = k2 = k3 = 0.

3. Using the technique of Exercise 2, determine whether or not the following sets of
three vectors are linearly independent.
(a) (1, 2, 1), (1, 3, 1), (1, 4, 1)
(b) (2, 0, −1), (3, 2, 2), (1, −2, −3)
(c) (1, 2, 0), (0, 1, 2), (2, 0, 1)
(d) (−3, π, 1), (0, 1, 0), (−2, −2, −2)

In Exercises 4–7, consider the linear system dY/dt = AY with the coefficient matrix A
specified. Each of these systems decouples into a two-dimensional system and a one-
dimensional system. For each exercise,
(a) compute the eigenvalues,
(b) determine how the system decouples,
(c) sketch the two-dimensional phase plane and one-dimensional phase line for the
decoupled systems, and

(d) give a rough sketch of the phase portrait of the system.

4. A =

⎛

⎜⎝
0 1 0

−1 0 0
0 0 2

⎞

⎟⎠ 5. A =

⎛

⎜⎝
−2 3 0
3 −2 0
0 0 −1

⎞

⎟⎠

6. A =

⎛

⎜⎝
1 0 3
0 −1 0

−3 0 1

⎞

⎟⎠ 7. A =

⎛

⎜⎝
1 0 0
0 2 −1
0 −1 2

⎞

⎟⎠
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Exercises 8–9 consider the properties of the cubic polynomial

p(λ) = αλ3 + βλ2 + γ λ + δ,

where α, β, γ , and δ are real numbers.

8. (a) Show that, if α is positive, then the limit of p(λ) as λ → ∞ is∞ and the limit
of p(λ) as λ → −∞ is −∞.

(b) Show that, if α is negative, then the limit of p(λ) as λ → ∞ is −∞ and the
limit of p(λ) as λ → −∞ is∞.

(c) Using the above, show that p(λ) must have at least one real root (that is, at
least one real number λ0 such that p(λ0) = 0 ). [Hint: Look at the graph of
p(λ).]

9. Suppose a + ib is a root of p(λ) (so p(a + ib) = 0). Show that a − ib is also a
root. [Hint: Remember that a complex number is zero if and only if both its real and
imaginary parts are zero. Then compute p(a + ib) and p(a − ib).]

In Exercises 10–13, consider the linear system dY/dt = BY with the coefficient ma-
trix B specified. These systems do not fit into the classification of the most common
types of systems given in the text. However, the equations for dx/dt and dy/dt decou-
ple from dz/dt . For each of these systems,
(a) compute the eigenvalues,
(b) sketch the xy-phase plane and the z-phase line, and
(c) give a rough sketch of the phase portrait of the system.

10. B =

⎛

⎜⎝
−2 1 0
0 −2 0
0 0 −1

⎞

⎟⎠ 11. B =

⎛

⎜⎝
−2 1 0
0 −2 0
0 0 1

⎞

⎟⎠

12. B =

⎛

⎜⎝
−1 2 0
2 −4 0
0 0 −1

⎞

⎟⎠ 13. B =

⎛

⎜⎝
−1 2 0
2 −4 0
0 0 0

⎞

⎟⎠

In Exercises 14–15, consider the linear system dY/dt = CY. These systems do not fit
into the classification of the most common types of systems given in the text, and they
do not decouple into lower-dimensional systems. For each system,
(a) compute the eigenvalues,
(b) compute the eigenvectors, and
(c) sketch (as best you can) the phase portrait of the system. [Hint: Use the eigenval-
ues and eigenvectors and also vectors in the vector field.]

14. C =

⎛

⎜⎝
−2 1 0
0 −2 1
0 0 −2

⎞

⎟⎠ 15. C =

⎛

⎜⎝
0 1 0
0 0 1
0 0 0

⎞

⎟⎠
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16. For the linear system

dY
dt

= AY =

⎛

⎜⎝
2 −1 0
0 −2 3

−1 3 −1

⎞

⎟⎠

⎛

⎜⎝
x
y
z

⎞

⎟⎠ :

(a) Show that V1 = (1, 1, 1) is an eigenvector of the coefficient matrix by com-
puting AV1. What is the eigenvalue for this eigenvector?

(b) Find the other two eigenvalues for the matrix A.
(c) Classify the system (source, sink, . . . ).
(d) Sketch (as best you can) the phase portrait. [Hint: Use the other eigenvalues

and find the other eigenvectors.]

17. For the linear system

dY
dt

= AY =

⎛

⎜⎝
−4 3 0
0 −1 1
5 −5 0

⎞

⎟⎠

⎛

⎜⎝
x
y
z

⎞

⎟⎠ :

(a) Show that V1 = (1, 1, 0) is an eigenvector of the coefficient matrix by com-
puting AV1. What is the eigenvalue for this eigenvector?

(b) Find the other two eigenvalues for the matrix A.
(c) Classify the system (source, sink, . . . ).
(d) Sketch (as best you can) the phase portrait. [Hint: Use the other eigenvalues

and find the other eigenvectors.]

18. Consider the linear system

dY
dt

= BY =

⎛

⎜⎝
−10 10 0
28 −1 0
0 0 −8/3

⎞

⎟⎠

⎛

⎜⎝
x
y
z

⎞

⎟⎠ .

(This system is related to the Lorenz system studied in Section 2.8, and we will use
the results obtained in this exercise when we return to the Lorenz equations in Sec-
tion 5.5.)
(a) Find the characteristic polynomial and the eigenvalues.
(b) Find the eigenvectors.
(c) Sketch the phase portrait (as best you can).
(d) Comment on how the fact that the system “decouples” helps in the computa-

tions and in sketching the phase space.
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