Quiz: October 22

This is a closed-book quiz, and no team-work or reference materials are permitted.
A government report on housing costs says that the mean price of single-family homes nationwide is $\$ 265,700$. We want to see how home prices in Indiana compare with this figure. We collect data on a random sample of 43 homes for sale in Indiana and find a mean price of $\$ 243,300$ with standard deviation $\$ 53,600$.
Carry out a hypothesis test to determine whether the prices of single-family homes in Indiana are lower than the nationwide figures. Be sure to show all steps, including clear statement of hypotheses, model \& conditions, computations and conclusion.

Solution

Let $\mu=$ true mean price of single-family homes in Indiana,
I will use a significance level of 10%; i.e., $\alpha=0.1$.

* Null hypothesis $\quad H_{0}: \mu=\$ 265,700$ Alt. hypothesis $\quad H_{A}: \mu<\$ 265,700$ (1 tail since we want to know if it is lower)
* Check conditions:
(i) Is the sample independent? Yes, because it was randomly selected and its size is 43 , which is less than 10% of all homes in Indiana.
(ii) Is the sampled data approximately normal? Unable to determine. But with a size of 43 , that condition is less critical.
* Sampling distribution model (based on H_{0}) is: $t_{42}\left(265,700 ; \frac{53,600}{\sqrt{43}}\right)$:

Sample info: $n=43, \bar{y}=\$ 243,300, s=\$ 53,600$.
$\mathrm{SE}=\frac{s}{\sqrt{n}}=\frac{53,600}{\sqrt{43}}=8173.92$
t-score $=\frac{\bar{y}-\mu}{\mathrm{SE}}=\frac{243,300-265,700}{8173.92}$ $=-2.74$
Want to find the area shown in the sketch, which corresponds to $t<-2.74$.

* From t-table, the closest lower $d f$ is 40 . Our t-score has larger magnitude than the largest one given (i.e., 2.704). Therefore, our P-value is <0.005 or 0.5%.
* Conclusion: This P-value is below our 10% significance level. Thus, we reject the null hypothesis, and infer that the prices of single-family homes in Indiana are statistically significantly lower than the nationwide average figures.

Grading: Total points possible $=5$.
$0.5 \mathrm{pt}+0.5 \mathrm{pt}=$ correct hypotheses + clarify parameter used in them.
$0.5 \mathrm{pt}+0.5 \mathrm{pt}=$ conditions check + compute correct SE .
$1 \mathrm{pt}=$ correct $d f$ and sampling distribution model $t_{42}(265700,8173.92)$.
$1 \mathrm{pt}=$ compute correct t -score.
$1 \mathrm{pt}=$ correct P -value and conclusion.

