Quiz: October 11

This is a closed-book quiz, and no team-work or reference materials are permitted.
(1) According to the Central Limit Theorem, what are the mean and the standard deviation of the sampling distribution of sample means?
(2) A store randomly samples 573 shoppers over the course of a year and finds that 124 of them made their visit because of a coupon they'd received in the mail. Construct a 95% confidence interval for the fraction of all shoppers whose visit was because of a coupon they received in the mail.

Solution

(1) Providing the conditions are met, according to the Central Limit Theorem, the sampling distribution of sample means will have:
mean $=$ true mean of the population under consideration
standard deviation $=\frac{\sigma}{\sqrt{n}}$, where σ is the standard deviation of the population, n is the sample size.
(2) Check conditions for the Central Limit Theorem.
(i) Independence: Reasonable to assume, since sample is random and its size is likely less than 10% of of all shoppers during that year.
(ii) Sample size: There are 124 successes and 449 failures, both more than 10. So the sample size is large enough.
Computations:
Confidence interval $=\hat{p} \pm z^{*} \cdot M E$
Sampled proportion is $\hat{p}=\frac{124}{537}=0.2164$. Margin of Error $=z^{*} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
We want 95% confidence, so: $z *=1.96$.

$$
\text { Margin of Error }=1.96 \sqrt{\frac{0.2164 \times(1-0.2164)}{573}}=1.96 \times 0.0172=0.0337
$$

Therefore, the confidence interval is: $0.2164 \pm 0.0337=[0.183,0.25]$
Conclusion: With 95% confidence, the true proprtion of all shoppers who visit the store because of a coupon they received in the mail is between 0.183 and 0.25 .

Grading: Total points possible $=5$.
1.5 pt for $(1): 0.5 \mathrm{pt}=$ correct mean; $1 \mathrm{pt}=$ correct SD .
3.5 pt for $(2): 0.5+0.5 \mathrm{pt}=$ check conditions + correct \hat{p}.
$1+1 \mathrm{pt}=$ compute correct $\mathrm{ME}+$ correct C.I.
$0.5 \mathrm{pt}=$ state a correct conclusion.

