A warmup

Consider the function

$$
y=\frac{1}{1+e^{-(m x+b)}}
$$

with $x=$ independent variable, $y=$ dependent variable, $m, b=$ some given numbers.

Let's try to understand this function a bit:
(1) Graph y vs x and see what it looks like. Pick some values for m, b (e.g, $m=1, b=0$ would work just fine).
(2) What is the range of y ? In fact, go ahead and find: $\lim _{x \rightarrow \pm \infty} y$
(3) Show that the function can be rewritten as

$$
\frac{y}{1-y}=e^{m x+b} \Rightarrow \ln \left[\frac{y}{1-y}\right]=m x+b
$$

(4) If we define $z=\ln [y /(1-y)]$, this last equation is a straight line relationship between x and z.
(5) One last Q: What is the range of z ?

Logistic regression idea

1. We want to construct a regression model to predict the response of a categorical variable y that has two categories (e.g., yes/no, right/wrong).
2. To do this, we first encode the categories as binary numbers.
3. We then find the best linear model for predicting $z=\ln [y /(1-y)]$, of the form

$$
\hat{z}=b_{0}+b_{1} x_{1}+b_{2} x_{2}+\ldots+b_{k} x_{k}
$$

4. To predict \hat{y} for any set of given inputs, we first find \hat{z}, and then compute \hat{y} by inverting the formula $\hat{z}=\ln [\hat{y} /(1-\hat{y})]$.
5. The resulting \hat{y} will be a value between $0-1$, and represents a probability corresponding to the categories in y.
