MLR model selection process 1

Here is a schematic example to illustrate the backwards elimination process of MLR model selection: It starts with the full model.

Suppose the full MLR model consists of 4 predictors. Thus, it looks like

$$
\hat{y}=b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+b_{4} x_{4}
$$

The software output will tell us the adjusted R^{2} for this model.
Step 1: Recompute the model after dropping one variable at time, and check the new adjusted R^{2}.

x_{1}	x_{2}	x_{3}	x_{4}	new adj R^{2}
\times	\checkmark	\checkmark	\checkmark	\downarrow
\checkmark	\times	\checkmark	\checkmark	\uparrow
\checkmark	\checkmark	\times	\checkmark	\downarrow
\checkmark	\checkmark	\checkmark	\times	\downarrow

In this example when x_{2} is dropped, adjusted R^{2} goes up. Thus, we drop x_{2} from the model.

Step 2: Repeat the process - drop one variable at time, and check the adjusted R^{2}.

x_{1}	x_{3}	x_{4}	new adj R^{2}
\times	\checkmark	\checkmark	\downarrow
\checkmark	\times	\checkmark	\downarrow
\checkmark	\checkmark	\times	\uparrow

We drop x_{4} from the model, since it causes adjusted R^{2} to go up.
Step 3: Repeat the process - drop one variable at time, and check the adjusted R^{2}.

x_{1}	x_{3}	new adj R^{2}
\times	\checkmark	\downarrow
\checkmark	\times	\downarrow

Conclusion: The remaining predictors (x_{1} and x_{3}) comprise the optimal model, since dropping either of them will decrease the adjusted R^{2}.

MLR model selection process 2

Here is a schematic example to illustrate the forward selection process of MLR model selection: It starts with no predictors in the model. Thus, it looks like:

$$
\hat{y}=b_{0}
$$

Step 1: Compute the model after adding one predictor at a time, and check the adjusted R^{2}. For example, here is what it might look like:

	adj R^{2}
x_{1}	56.3
x_{2}	35.1
x_{3}	59.5
x_{4}	14.7

Since x_{3} has the largest R^{2}, we include it in the model.
Step 2: Repeat the process - add one (of the remaining) predictors at a time and check the adjusted R^{2}.

	adj R^{2}
$x_{1}+x_{3}$	64.7
$x_{2}+x_{3}$	45.4
$x_{4}+x_{3}$	14.7

We add x_{1} to the model, since it increases the adjusted R^{2} the most.
Step 3: Repeat the process - add one (of the remaining) predictors at a time and check the adjusted R^{2}.

	adj R^{2}
$x_{2}+\left(x_{1}+x_{3}\right)$	52.1
$x_{4}+\left(x_{1}+x_{3}\right)$	34.9

Conclusion: None of the remaining predictors increases the adjusted R^{2}. So the optimal model consists of the predictors x_{1} and x_{3}.

