What is R^{2} ? I mean, seriously...

In a previous class you found the line of best fit for the following data set

x_{i}	y_{i}
0	12
1	30
2	28

The equation of that line was:

$$
\hat{y}=15.33+8 x
$$

Let's explore what R^{2} is all about:
(1) Compute the variability/variance in y. In other words, find: $\sum\left(y_{i}-\bar{y}\right)^{2}$
(2) Next, compute the variability in the residuals. That is, find: $\sum\left(y_{i}-\hat{y}_{i}\right)^{2}$
(3) Divide the answer in (2) by (1).

This gives the percent of variability in the response variable that remains in the residuals - it is the variability in y_{i} that is NOT accounted for by the regression model.
(4) Compute 1 - the answer in (3). That gives you R^{2}, the variability that IS accounted for by the regression model.

To do the above computations you will need the values of \bar{y} and \hat{y}_{i}. They are:
$\bar{y}=23.33, \quad \hat{y}_{1}=15.33, \hat{y}_{2}=23.33, \hat{y}_{3}=31.33$

If all goes well, the answer you should get is: $R^{2}=0.6575$.
If you fit the regression line in $R[$ with $\operatorname{lm}(y \sim x)]$ you should get the exact same R^{2}.

